

Contents lists available at ScienceDirect

Journal of Number Theory

www.elsevier.com/locate/jnt

On the quantitative subspace theorem

Giang Le

Department of Mathematics, Hanoi National University of Education, 136-Xuan Thuy, Cau Giay, HaNoi, Viet Nam

ARTICLE INFO

Article history: Received 15 November 2013 Received in revised form 15 June 2014 Accepted 15 June 2014 Available online 6 August 2014 Communicated by David Goss

MSC: 11J68 11J25

Keywords: Diophantine approximation Subspace theorem

1. Introduction

1.1. We first recall some notation (see [6]). In this paper, by a projective subvariety of \mathbb{P}^N , we mean a geometrically irreducible Zariski-closed subset of \mathbb{P}^N . For a Zariski-closed subset X of \mathbb{P}^N and for a field Ω , we denote by $X(\Omega)$ the set of Ω -rational points of X.

All number fields considered in this paper are contained in a given algebraic closure $\overline{\mathbb{Q}}$ of \mathbb{Q} . Let K be a number field and denote by G_K the Galois group of $\overline{\mathbb{Q}}$ over K. For $x = (x_0, \ldots, x_N) \in \overline{\mathbb{Q}}^{N+1}, \sigma \in G_K$, we write

$$\sigma(x) = (\sigma(x_0), \dots, \sigma(x_N)).$$

In 2008, Evertse and Ferretti stated a quantitative version of the Subspace Theorem for a projective variety with higher degree polynomials instead of linear forms. Our goal is to generalize their results.

© 2014 Elsevier Inc. All rights reserved.

E-mail address: legiang01@yahoo.com.

Let \mathcal{O}_K denote the ring of integers of K. We have a canonical set M_K of places (or absolute values) of K consisting of one place for each prime ideal \mathfrak{p} of \mathcal{O}_K , one place for each real embedding $\sigma : K \longrightarrow \mathbb{R}$, and one place for each pair of conjugate embedding $\sigma, \bar{\sigma} : K \longrightarrow \mathbb{C}$. For $v \in M_K$, let K_v denote the completion of K with respect to v. We normalize our absolute values so that $|p|_v = p^{-[K_v:\mathbb{Q}_p]/[K:\mathbb{Q}]}$ if v corresponds to \mathfrak{p} and $\mathfrak{p}|p$ (in which case we say that v is non-Archimedean), and $|x|_v = |\sigma(x)|^{[K_v:\mathbb{R}]/[K:\mathbb{Q}]}$ if v corresponds to an embedding σ (in which case we say that v is Archimedean). Denote by M_K^∞ (resp. M_K^0) the set of Archimedean (resp. non-Archimedean) places. We also note that, if v is a place of K and w is a place of a field extension L of K, then we say that w lies above v (or v lies below w), denoted by w|v, if w and v define the same topology on K. These absolute values satisfy the product formula

$$\prod_{v \in M_K} |x|_v = 1 \quad \text{for } x \in K^*.$$

For each $x = [x_0 : ... : x_N] \in K^{N+1}$, we put

$$||x||_v := \max(|x_0|_v, \dots, |x_N|_v)$$

for $v \in M_K$. Then the absolute logarithmic height of x is defined by

$$h(x) = \log\bigg(\prod_{v \in M_K} \|x\|_v\bigg).$$

By the product formula, this is well-defined in $\mathbb{P}^{N}(K)$. Moreover, h(x) doesn't depend on the choice of the particular number field K containing x_0, \ldots, x_N . Thus, this function h gives rise to a height on $\mathbb{P}^{N}(\bar{\mathbb{Q}})$.

For every $v \in M_K$, we choose an extension of $|.|_v$ to $\overline{\mathbb{Q}}$ (this amounts to extending $|.|_v$ to the algebraic closure \overline{K}_v of K_v and choosing an embedding of $\overline{\mathbb{Q}}$ into \overline{K}_v). Further, for $v \in M_K$, $x = (x_0, \ldots, x_N) \in \overline{\mathbb{Q}}^{N+1}$, we put

$$||x||_v := \max(|x_0|_v, \dots, |x_N|_v).$$

Given a system f_0, \ldots, f_m of polynomials with coefficients in $\overline{\mathbb{Q}}$, we define

$$h(f_0,\ldots,f_m):=h(a),$$

where a is a vector consisting of the non-zero coefficients of f_0, \ldots, f_m . Further by $K(f_0, \ldots, f_m)$, we denote the extension of K generated by the coefficients of f_0, \ldots, f_m . The height of a projective subvariety X of \mathbb{P}^N defined over $\overline{\mathbb{Q}}$ is defined by

$$h(X) := h(F_X),$$

where F_X is the Chow form of X (see Paragraph 2.2 below).

Download English Version:

https://daneshyari.com/en/article/4593753

Download Persian Version:

https://daneshyari.com/article/4593753

Daneshyari.com