# On the quantitative subspace theorem 

Giang Le<br>Department of Mathematics, Hanoi National University of Education, 136-Xuan Thuy, Cau Giay, HaNoi, Viet Nam

## A R T I C L E I N F O

## Article history:

Received 15 November 2013
Received in revised form 15 June 2014
Accepted 15 June 2014
Available online 6 August 2014
Communicated by David Goss

## MSC:

11J68
11J25
Keywords:
Diophantine approximation
Subspace theorem

## A B S T R A C T

In 2008, Evertse and Ferretti stated a quantitative version of the Subspace Theorem for a projective variety with higher degree polynomials instead of linear forms. Our goal is to generalize their results.
© 2014 Elsevier Inc. All rights reserved.

## 1. Introduction

1.1. We first recall some notation (see [6]). In this paper, by a projective subvariety of $\mathbb{P}^{N}$, we mean a geometrically irreducible Zariski-closed subset of $\mathbb{P}^{N}$. For a Zariski-closed subset $X$ of $\mathbb{P}^{N}$ and for a field $\Omega$, we denote by $X(\Omega)$ the set of $\Omega$-rational points of $X$.

All number fields considered in this paper are contained in a given algebraic closure $\overline{\mathbb{Q}}$ of $\mathbb{Q}$. Let $K$ be a number field and denote by $G_{K}$ the Galois group of $\overline{\mathbb{Q}}$ over $K$. For $x=\left(x_{0}, \ldots, x_{N}\right) \in \overline{\mathbb{Q}}^{N+1}, \sigma \in G_{K}$, we write

$$
\sigma(x)=\left(\sigma\left(x_{0}\right), \ldots, \sigma\left(x_{N}\right)\right) .
$$

[^0]http://dx.doi.org/10.1016/j.jnt.2014.06.009
0022-314X/@ 2014 Elsevier Inc. All rights reserved.

Let $\mathcal{O}_{K}$ denote the ring of integers of $K$. We have a canonical set $M_{K}$ of places (or absolute values) of $K$ consisting of one place for each prime ideal $\mathfrak{p}$ of $\mathcal{O}_{K}$, one place for each real embedding $\sigma: K \longrightarrow \mathbb{R}$, and one place for each pair of conjugate embedding $\sigma, \bar{\sigma}: K \longrightarrow \mathbb{C}$. For $v \in M_{K}$, let $K_{v}$ denote the completion of $K$ with respect to $v$. We normalize our absolute values so that $|p|_{v}=p^{-\left[K_{v}: \mathbb{Q}_{p}\right] /[K: \mathbb{Q}]}$ if $v$ corresponds to $\mathfrak{p}$ and $\mathfrak{p} \mid p$ (in which case we say that $v$ is non-Archimedean), and $|x|_{v}=|\sigma(x)|^{\left[K_{v}: \mathbb{R}\right] /[K: \mathbb{Q}]}$ if $v$ corresponds to an embedding $\sigma$ (in which case we say that $v$ is Archimedean). Denote by $M_{K}^{\infty}\left(\right.$ resp. $\left.M_{K}^{0}\right)$ the set of Archimedean (resp. non-Archimedean) places. We also note that, if $v$ is a place of $K$ and $w$ is a place of a field extension $L$ of $K$, then we say that $w$ lies above $v$ (or $v$ lies below $w$ ), denoted by $w \mid v$, if $w$ and $v$ define the same topology on $K$. These absolute values satisfy the product formula

$$
\prod_{v \in M_{K}}|x|_{v}=1 \quad \text { for } x \in K^{*} .
$$

For each $x=\left[x_{0}: \ldots: x_{N}\right] \in K^{N+1}$, we put

$$
\|x\|_{v}:=\max \left(\left|x_{0}\right|_{v}, \ldots,\left|x_{N}\right|_{v}\right)
$$

for $v \in M_{K}$. Then the absolute logarithmic height of $x$ is defined by

$$
h(x)=\log \left(\prod_{v \in M_{K}}\|x\|_{v}\right) .
$$

By the product formula, this is well-defined in $\mathbb{P}^{N}(K)$. Moreover, $h(x)$ doesn't depend on the choice of the particular number field $K$ containing $x_{0}, \ldots, x_{N}$. Thus, this function $h$ gives rise to a height on $\mathbb{P}^{N}(\overline{\mathbb{Q}})$.

For every $v \in M_{K}$, we choose an extension of $|\cdot|_{v}$ to $\overline{\mathbb{Q}}$ (this amounts to extending $|\cdot|_{v}$ to the algebraic closure $\bar{K}_{v}$ of $K_{v}$ and choosing an embedding of $\overline{\mathbb{Q}}$ into $\bar{K}_{v}$ ). Further, for $v \in M_{K}, x=\left(x_{0}, \ldots, x_{N}\right) \in \overline{\mathbb{Q}}^{N+1}$, we put

$$
\|x\|_{v}:=\max \left(\left|x_{0}\right|_{v}, \ldots,\left|x_{N}\right|_{v}\right)
$$

Given a system $f_{0}, \ldots, f_{m}$ of polynomials with coefficients in $\overline{\mathbb{Q}}$, we define

$$
h\left(f_{0}, \ldots, f_{m}\right):=h(a),
$$

where $a$ is a vector consisting of the non-zero coefficients of $f_{0}, \ldots, f_{m}$. Further by $K\left(f_{0}, \ldots, f_{m}\right)$, we denote the extension of $K$ generated by the coefficients of $f_{0}, \ldots, f_{m}$. The height of a projective subvariety $X$ of $\mathbb{P}^{N}$ defined over $\overline{\mathbb{Q}}$ is defined by

$$
h(X):=h\left(F_{X}\right),
$$

where $F_{X}$ is the Chow form of $X$ (see Paragraph 2.2 below).

# https://daneshyari.com/en/article/4593753 

Download Persian Version:
https://daneshyari.com/article/4593753

## Daneshyari.com


[^0]:    E-mail address: legiang01@yahoo.com.

