

Contents lists available at ScienceDirect

Journal of Number Theory

Signed Shintani cones for number fields with one complex place $^{\frac{1}{12}}$

Milton Espinoza

Departamento de Matemáticas, Universidad de Valparaíso, Gran Bretaña 1091, Valparaíso, Chile

ARTICLE INFO

$Article\ history:$

Received 21 March 2013 Received in revised form 19 June 2014

Accepted 20 June 2014 Available online 12 August 2014 Communicated by David Goss

MSC:

11R27

11R42 11Y40

Units

Keywords: Shintani cones Fundamental domain ABSTRACT

We give a signed fundamental domain for the action on $\mathbb{C}^* \times \mathbb{R}^{n-2}_+$ of the totally positive units $E(k)_+$ of a number field k of degree n and having exactly one pair of complex embeddings. This signed fundamental domain, built of k-rational simplicial cones, is as convenient as a true fundamental domain for the purpose of studying Dedekind zeta functions. However, while there is no general construction of a true fundamental domain, we construct a signed fundamental domain from any set of fundamental units of k.

© 2014 Elsevier Inc. All rights reserved.

Contents

1.	Introduction	497
2.	The signed fundamental domain	501
	2.1. The seven-step algorithm	502
	2.2. Corollaries of Theorem 1	504
3.	Examples	505

E-mail address: milton.espinoza@yahoo.com.

 $^{^{\}circ}$ This work was partially supported by the Chilean FONDECYT grants 1085153 and 1110277. I would like to address special thanks to my advisor, Eduardo Friedman.

	3.1.	Cubic case	505
		3.1.1. Example 1	505
		3.1.2. Example 2	506
	3.2.	Quartic case	507
		3.2.1. Example 3	507
4.	Const	truction of f	508
	4.1.	The argument at the complex embedding	508
	4.2.	Domain of f	513
	4.3.	The piecewise affine map f	522
5.	Proof	of Theorem 1	529
	5.1.	Maps descending to tori	529
	5.2.	Degree computations	535
		5.2.1. Global degree	535
		5.2.2. Local degree	536
	5.3.	Preliminary results	536
	5.4.	End of the proof	538
Refer	ences		539

1. Introduction

Motivated by the study of special values of L-functions over totally real number fields, Shintani introduced in 1976 [Sh1] a geometric method that allowed him to write any partial zeta function of a totally real number field as a finite sum of certain Dirichlet series, which can be considered as a natural generalization of the Hurwitz zeta function. Later [Sh2] Shintani extended these results to general number fields. In order to enunciate Shintani's geometric method, fix a number field k with r real embeddings and s pairs of complex embeddings (i.e. $[k:\mathbb{Q}] = 2s + r$), and let E(k) be its group of units. Given a complete set $\tau_i: k \to \mathbb{C}$ ($1 \le i \le s + r$) of embeddings of k,

$$\underbrace{\tau_1, \overline{\tau}_1, \tau_2, \overline{\tau}_2, \dots, \tau_s, \overline{\tau}_s}_{\text{complex embeddings}}, \underbrace{\tau_{s+1}, \tau_{s+2}, \dots, \tau_{s+r}}_{\text{real embeddings}}, \tag{1}$$

we can consider $k \subset \mathbb{C}^s \times \mathbb{R}^r$ by identifying $x \in k$ with

$$(x^{(1)}, x^{(2)}, \dots, x^{(s+r)}) \in \mathbb{C}^s \times \mathbb{R}^r,$$

where $x^{(i)} := \tau_i(x)$. Put

$$E(k)_+ := E(k) \cap (\mathbb{C}^s \times \mathbb{R}^r_+)$$
 and $k_+ := k \cap ((\mathbb{C}^*)^s \times \mathbb{R}^r_+),$

where $\mathbb{R}_+^r := (0, \infty)^r$. Then the group $E(k)_+$ of totally positive units of k acts on $(\mathbb{C}^*)^s \times \mathbb{R}_+^r$ by component-wise multiplication, where $(\mathbb{C}^*)^s := (\mathbb{C} \setminus \{0\})^s$. On the other hand, if $v_1, v_2, \ldots, v_d \in \mathbb{C}^s \times \mathbb{R}^r$ $(1 \leq d \leq 2s + r)$ is a set of \mathbb{R} -linearly independent vectors, we shall call

$$C(v_1, v_2, \dots, v_d) := \{t_1v_1 + t_2v_2 + \dots + t_dv_d \mid t_i > 0\}$$

the d-dimensional simplicial cone generated by v_1, v_2, \ldots, v_d .

Download English Version:

https://daneshyari.com/en/article/4593754

Download Persian Version:

https://daneshyari.com/article/4593754

<u>Daneshyari.com</u>