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A recent paper by Hanusa and Nath states many conjectures
in the study of self-conjugate core partitions. We prove all
but two of these conjectures asymptotically by number-
theoretic means. We also obtain exact formulas for the
number of self-conjugate t-core partitions for “small” t via
explicit computations with modular forms. For instance, self-
conjugate 9-core partitions are related to counting points on
elliptic curves over Q with conductor dividing 108, and self-
conjugate 6-core partitions are related to the representations
of integers congruent to 11 mod 24 by 3X2 + 32Y 2 + 96Z2,
a form with finitely many (conjecturally five) exceptional
integers in this arithmetic progression, by an ineffective result
of Duke–Schulze-Pillot.
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1. Introduction

Since the time of Young it has been known that partitions index the irreducible
representations of the symmetric groups. Young and mathematicians of his time also
knew that a partition could be encoded in a convenient way — via what is now known
as a Young diagram — and that flipping this diagram about a natural diagonal amounted
to tensoring the corresponding irreducible representation with the sign character. Hence
it was deduced that the Young diagrams invariant under this flip corresponded to those
irreducible representations that split upon restriction to the alternating subgroup.

Some time later, it was discovered by Frame–Robinson–Thrall [6] that the hook
lengths of a Young diagram determine the dimension of the corresponding irreducible
representation (over C). It followed that the study of partitions with hook lengths indi-
visible by a given integer t — so-called t-core partitions — was connected to modular
representation theory.

In this paper we study self-conjugate t-core partitions, asymptotically resolving all but
two conjectures posed in the paper of Hanusa and Nath [10] on counting self-conjugate
t-core partitions. In all but two cases the implied constants are effective, so in principle
this reduces many of these conjectures to a finite amount of computation. The ineffec-
tive cases are due to the ineffectivity of a result of Duke–Schulze-Pillot [5] on integers
represented by forms in a given spinor genus, which arises due to the Landau–Siegel
phenomenon.

2. Preliminaries

Let λ := λ1 � · · · � λk be a partition of n. For each box b in its associated Young
diagram, one defines its hook length hb by counting the number of boxes directly to
its right or below it, including the box itself. The irreducible representations of the
symmetric group on n letters, Sn, are in explicit bijection with the partitions of n. The
hook-length formula states that the irreducible representation corresponding to λ has
dimension

dim ρλ = n!∏
hb

, (1)

the product taken over all the boxes in the Young diagram corresponding to λ.
The representations of Sn can be defined over Z (i.e., can be realized as maps

Sn → GLd(Z)), and so one may speak of reduction modulo a prime p. From modular
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