

Contents lists available at ScienceDirect

Journal of Number Theory

www.elsevier.com/locate/jnt

Divisibility by 2 of Stirling numbers of the second kind and their differences

Jianrong Zhao^a, Shaofang Hong^{b,*,1}, Wei Zhao^b

 ^a School of Economic Mathematics, Southwestern University of Finance and Economics, Chengdu 610074, PR China
^b Mathematical College, Sichuan University, Chengdu 610064, PR China

ARTICLE INFO

Article history: Received 8 March 2013 Received in revised form 7 September 2013 Accepted 30 January 2014 Available online 4 March 2014 Communicated by David Goss

MSC: 11B73 11A07

Keywords: Stirling numbers of the second kind Congruences for power series Bell polynomial 2-Adic valuation

ABSTRACT

Let n, k, a and c be positive integers and b be a nonnegative integer. Let $\nu_2(k)$ and $s_2(k)$ be the 2-adic valuation of k and the sum of binary digits of k, respectively. Let S(n,k) be the Stirling number of the second kind. It is shown that $\nu_2(S(c2^n, b2^{n+1} + a)) \ge s_2(a) - 1$, where $0 < a < 2^{n+1}$ and $2 \nmid c$. Furthermore, one gets that $\nu_2(S(c2^n, (c-1)2^n + a)) = s_2(a) - 1$, where $n \ge 2$, $1 \le a \le 2^n$ and $2 \nmid c$. Finally, it is proved that if $3 \le k \le 2^n$ and k is not a power of 2 minus 1, then $\nu_2(S(a2^n, k) - S(b2^n, k)) = n + \nu_2(a - b) - \lceil \log_2 k \rceil + s_2(k) + \delta(k)$, where $\delta(4) = 2$, $\delta(k) = 1$ if k > 4 is a power of 2, and $\delta(k) = 0$ otherwise. This confirms a conjecture of Lengyel raised in 2009 except when k is a power of 2 minus 1.

© 2014 Elsevier Inc. All rights reserved.

^{*} Corresponding author.

E-mail addresses: mathzjr@swufe.edu.cn, mathzjr@foxmail.com (J. Zhao), sfhong@scu.edu.cn, s-f.hong@tom.com, hongsf02@yahoo.com (S. Hong).

 $^{^{1}}$ S. Hong was supported partially by National Science Foundation of China Grant #11371260 and by the Ph.D. Programs Foundation of Ministry of Education of China Grant #20100181110073. J. Zhao was supported partially by the Scientific Research Project Foundation of Department of Education of Sichuan Province Grant # 14ZB0450.

1. Introduction and the statements of main results

The Stirling number of the second kind S(n,k) is defined for $n \in \mathbb{N}$ and positive integer $k \leq n$ as the number of ways to partition a set of n elements into exactly knon-empty subsets. It satisfies the recurrence relation

$$S(n,k) = S(n-1, k-1) + kS(n-1, k),$$

with initial condition S(0,0) = 1 and S(n,0) = 0 for n > 0. There is also an explicit formula in terms of binomial coefficients given by

$$S(n,k) = \frac{1}{k!} \sum_{i=0}^{k} (-1)^{i} \binom{k}{i} (k-i)^{n}.$$
 (1)

Divisibility properties of Stirling numbers have been studied from a number of different perspectives. It is known that for each fixed k, the sequence $\{S(n,k), n \ge k\}$ is periodic modulo prime powers. The length of this period has been studied by Carlitz [5] and Kwong [16]. Chan and Manna [6] characterized S(n,k) modulo prime powers in terms of binomial coefficients. In fact, they gave explicit formulas for S(n,k) modulo 4, then for $S(n,a2^m)$ modulo 2^m , where $m \ge 3$, a > 0 and $n \ge a2^m + 1$, and finally for $S(n,ap^m)$ modulo p^m with p being an odd prime.

Divisibility properties of integer sequences are often expressed in terms of p-adic valuations. Given a prime p and a positive integer m, there exist unique integers a and n, with $p \nmid a$ and $n \ge 0$, such that $m = ap^n$. The number n is called the p-adic valuation of m, denoted by $n = \nu_p(m)$. The numbers $\min\{\nu_p(k|S(n,k)): m \le k \le n\}$ are important in algebraic topology, see, for example, [3,8,10-12,20,21]. Some work on evaluating $\nu_p(k|S(n,k))$ has appeared in above papers as well as in [7,9,24]. Amdeberhan, Manna and Moll [2] investigated the 2-adic valuations of Stirling numbers of the second kind and computed $\nu_2(S(n,k))$ for $k \le 4$. They also raised an interesting conjecture on the congruence classes of S(n,k), modulo powers of 2. Recently, Bennett and Mosteig [4] used computational methods to justify this conjecture if $k \le 20$. But this conjecture is still kept open if $k \ge 21$.

This paper deals with the 2-adic valuations of the Stirling numbers of the second kind. Lengyel [17] studied the 2-adic valuations of S(n,k) and conjectured, proved by Wannemacker [23], $\nu_2(S(2^n,k)) = s_2(k) - 1$, where $s_2(k)$ means the base 2 digital sum of k. Using Wannemacker's result, Hong, Zhao and Zhao [13] proved that $\nu_2(S(2^n + 1, k + 1)) = s_2(k) - 1$, which confirmed another conjecture of Amdeberhan, Manna and Moll [2]. Lengyel [18,19] showed that if $1 \leq k \leq 2^n$, then $\nu_2(S(c2^n,k)) = s_2(k) - 1$ for any positive integer c. Meanwhile, Lengyel [18] proved that $\nu_2(S(c2^n,k)) \geq s_2(k) - 1$ if $c \geq 1$ is an odd integer and $1 \leq k \leq 2^{n+1}$. Actually, a more general result is true. That is, one has Download English Version:

https://daneshyari.com/en/article/4593782

Download Persian Version:

https://daneshyari.com/article/4593782

Daneshyari.com