

Contents lists available at ScienceDirect

Journal of Number Theory

www.elsevier.com/locate/jnt

The least common multiple of random sets of positive integers

Javier Cilleruelo^a, Juanjo Rué^b, Paulius Šarka^{c,d}, Ana Zumalacárregui^{a,*}

^a Instituto de Ciencias Matemáticas (CSIC-UAM-UC3M-UCM) and Departamento

de Matemáticas, Universidad Autónoma de Madrid, 28049 Madrid, Spain

^b Institut für Mathematik, Freie Universität Berlin, Arnimallee 3-5,

D-14195 Berlin, Germany

^c Institute of Mathematics and Informatics, Akademijos 4, Vilnius LT-08663, Lithuania

^d Department of Mathematics and Informatics, Vilnius University, Naugarduko 24, Vilnius LT-03225, Lithuania

ARTICLE INFO

Article history: Received 16 December 2013 Received in revised form 1 April 2014 Accepted 8 April 2014 Available online 5 June 2014 Communicated by K. Soundararajan

Keywords: Least common multiple Random sequences

ABSTRACT

We study the typical behavior of the least common multiple of the elements of a random subset $A \subset \{1, \ldots, n\}$. For example we prove that $lcm\{a: a \in A\} = 2^{n(1+o(1))}$ for almost all subsets $A \subset \{1, \ldots, n\}$.

© 2014 Elsevier Inc. All rights reserved.

1. Introduction

The function $\psi(n) = \log \operatorname{lcm}\{m: 1 \leq m \leq n\}$ was introduced by Chebyshev in his study on the distribution of the prime numbers. It is a well known fact that the

* Corresponding author.

http://dx.doi.org/10.1016/j.jnt.2014.04.011

E-mail addresses: franciscojavier.cilleruelo@uam.es (J. Cilleruelo), jrue@zedat.fu-berlin.de (J. Rué), paulius.sarka@gmail.com (P. Šarka), ana.zumalacarregui@uam.es (A. Zumalacárregui).

⁰⁰²²⁻³¹⁴X/© 2014 Elsevier Inc. All rights reserved.

asymptotic relation $\psi(n) \sim n$ is equivalent to the Prime Number Theorem, which was proved independently by J. Hadamard and C.J. de la Vallée Poussin.

In the present paper, instead of considering the whole set $\{1, \ldots, n\}$, we study the typical behavior of the quantity $\psi(A) := \log \operatorname{lcm}\{a: a \in A\}$ for a random set A in $\{1, \ldots, n\}$ when $n \to \infty$. We define $\psi(\emptyset) = 0$. We consider two natural models.

In the first one, denoted by $B(n, \delta)$, each element in A is chosen independently at random in $\{1, \ldots, n\}$ with probability $\delta = \delta(n)$, typically a function of n.

Theorem 1.1. If $\delta = \delta(n) < 1$ and $\delta n \to \infty$ then

$$\psi(A) \sim n \frac{\delta \log(\delta^{-1})}{1-\delta}$$

asymptotically almost surely in $B(n, \delta)$ when $n \to \infty$.

The case $\delta = 1$ corresponds to the classical Chebyshev function and its asymptotic estimate appears as the limiting case, as δ tends to 1, in Theorem 1.1, since $\lim_{\delta \to 1} \frac{\delta \log(\delta^{-1})}{1-\delta} = 1.$

When $\delta = 1/2$ all the subsets $A \subset \{1, \ldots, n\}$ are chosen with the same probability and Theorem 1.1 gives the following result.

Corollary 1.1. For almost all sets $A \subset \{1, \ldots, n\}$ we have that

lcm{a:
$$a \in A$$
} = $2^{n(1+o(1))}$

For a given positive integer k = k(n), again typically a function of n, we consider the second model, where each subset of k elements is chosen uniformly at random among all sets of size k in $\{1, \ldots, n\}$. We denote this model by S(n, k).

When $\delta = k/n$ the heuristic suggests that both models are quite similar. Indeed, this is the strategy we follow to prove Theorem 1.2.

Theorem 1.2. For k = k(n) < n and $k \to \infty$ we have

$$\psi(A) = k \frac{\log(n/k)}{1 - k/n} \left(1 + O\left(e^{-C\sqrt{\log k}}\right)\right)$$

almost surely in S(n,k) when $n \to \infty$ for some positive constant C.

The case k = n, which corresponds to Chebyshev's function, is also obtained as a limiting case in Theorem 1.2 in the sense that $\lim_{k/n\to 1} \frac{\log(n/k)}{1-k/n} = 1$.

This work has been motivated by a result of the first author about the asymptotic behavior of $\psi(A)$ when $A = A_{q,n} := \{q(m): 1 \le q(m) \le n\}$ for a quadratic polynomial $q(x) \in \mathbb{Z}[x]$. We wondered if that behavior was typical among the sets $A \subset \{1, \ldots, n\}$ of similar size. We analyze this issue in the last section.

Download English Version:

https://daneshyari.com/en/article/4593792

Download Persian Version:

https://daneshyari.com/article/4593792

Daneshyari.com