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We study the typical behavior of the least common multiple of 
the elements of a random subset A ⊂ {1, . . . , n}. For example 
we prove that lcm{a: a ∈ A} = 2n(1+o(1)) for almost all 
subsets A ⊂ {1, . . . , n}.

© 2014 Elsevier Inc. All rights reserved.

1. Introduction

The function ψ(n) = log lcm{m: 1 ≤ m ≤ n} was introduced by Chebyshev in 
his study on the distribution of the prime numbers. It is a well known fact that the 
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asymptotic relation ψ(n) ∼ n is equivalent to the Prime Number Theorem, which was 
proved independently by J. Hadamard and C.J. de la Vallée Poussin.

In the present paper, instead of considering the whole set {1, . . . , n}, we study the 
typical behavior of the quantity ψ(A) := log lcm{a: a ∈ A} for a random set A in 
{1, . . . , n} when n → ∞. We define ψ(∅) = 0. We consider two natural models.

In the first one, denoted by B(n, δ), each element in A is chosen independently at 
random in {1, . . . , n} with probability δ = δ(n), typically a function of n.

Theorem 1.1. If δ = δ(n) < 1 and δn → ∞ then

ψ(A) ∼ n
δ log(δ−1)

1 − δ

asymptotically almost surely in B(n, δ) when n → ∞.

The case δ = 1 corresponds to the classical Chebyshev function and its asymp-
totic estimate appears as the limiting case, as δ tends to 1, in Theorem 1.1, since 
limδ→1

δ log(δ−1)
1−δ = 1.

When δ = 1/2 all the subsets A ⊂ {1, . . . , n} are chosen with the same probability 
and Theorem 1.1 gives the following result.

Corollary 1.1. For almost all sets A ⊂ {1, . . . , n} we have that

lcm{a: a ∈ A} = 2n(1+o(1)).

For a given positive integer k = k(n), again typically a function of n, we consider the 
second model, where each subset of k elements is chosen uniformly at random among all 
sets of size k in {1, . . . , n}. We denote this model by S(n, k).

When δ = k/n the heuristic suggests that both models are quite similar. Indeed, this 
is the strategy we follow to prove Theorem 1.2.

Theorem 1.2. For k = k(n) < n and k → ∞ we have

ψ(A) = k
log(n/k)
1 − k/n

(
1 + O

(
e−C

√
log k

))
almost surely in S(n, k) when n → ∞ for some positive constant C.

The case k = n, which corresponds to Chebyshev’s function, is also obtained as a 
limiting case in Theorem 1.2 in the sense that limk/n→1

log(n/k)
1−k/n = 1.

This work has been motivated by a result of the first author about the asymptotic 
behavior of ψ(A) when A = Aq,n := {q(m): 1 ≤ q(m) ≤ n} for a quadratic polynomial 
q(x) ∈ Z[x]. We wondered if that behavior was typical among the sets A ⊂ {1, . . . , n} of 
similar size. We analyze this issue in the last section.
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