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In the paper, the author establishes an integral representation, 
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1. Introduction

According to [1, pp. 293–294], there are two kinds of Cauchy numbers which may be 
defined respectively by

Cn =
1∫

0

〈x〉ndx and cn =
1∫

0

(x)ndx, (1.1)

where

〈x〉n =
{
x(x− 1)(x− 2) · · · (x− n + 1), n ≥ 1
1, n = 0

(1.2)

and

(x)n =
{
x(x + 1)(x + 2) · · · (x + n− 1), n ≥ 1
1, n = 0

(1.3)

are respectively called the falling and rising factorials. The coefficients expressing rising 
factorials (x)n in terms of falling factorials 〈x〉n are called Lah numbers. Lah numbers 
have an interesting meaning in combinatorics: they count the number of ways a set of n
elements can be partitioned into k nonempty linearly ordered subsets. Shortly speaking, 
Cauchy numbers play important roles in some fields, such as approximate integrals, 
Laplace summation formula, and difference-differential equations, and are also related 
to some famous numbers such as Stirling numbers, Bernoulli numbers, and harmonic 
numbers. Therefore, Cauchy numbers deserve to be studied.

It is known [1, p. 294] that Cauchy numbers of the second kind ck may be generated 
by

−t

(1 − t) ln(1 − t) =
∞∑

n=0
cn

tn

n! (1.4)

which is equivalent to

t

(1 + t) ln(1 + t) =
∞∑

n=0
(−1)ncn

tn

n! . (1.5)

The first few Cauchy numbers of the second kind ck are

c0 = 1, c1 = 1
2 , c2 = 5

6 , c3 = 9
4 , c4 = 251

30 ,

c5 = 475
12 , c6 = 19087

84 . (1.6)
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