

Contents lists available at ScienceDirect

Journal of Number Theory

www.elsevier.com/locate/jnt

An integral representation, complete monotonicity, and inequalities of Cauchy numbers of the second kind

Feng Qi^{a,b,c}

^a College of Mathematics, Inner Mongolia University for Nationalities, Tongliao City, Inner Mongolia Autonomous Region, 028043, China
 ^b Department of Mathematics, College of Science, Tianjin Polytechnic University, Tianjin City, 300387, China
 ^c Institute of Mathematics, Henan Polytechnic University, Jiaozuo City, Henan Province, 454010, China

ARTICLE INFO

Article history: Received 13 December 2013 Received in revised form 10 May 2014 Accepted 25 June 2014 Available online 2 July 2014 Communicated by David Goss

MSC:

primary 05A10, 11B83, 11R33, 97I30 secondary 26A48, 26A51, 26D99, 30E20, 33B99

Keywords:

Cauchy number of the second kind Integral representation Completely monotonic function Completely monotonic sequence Minimality Logarithmic convexity Inequality Majorization

ABSTRACT

In the paper, the author establishes an integral representation, finds the complete monotonicity, minimality, and logarithmic convexity, and presents some inequalities of Cauchy numbers of the second kind.

© 2014 Elsevier Inc. All rights reserved.

E-mail addresses: qifeng618@gmail.com, qifeng618@hotmail.com, qifeng618@qq.com. *URL:* http://qifeng618.wordpress.com.

1. Introduction

According to [1, pp. 293–294], there are two kinds of Cauchy numbers which may be defined respectively by

$$C_n = \int_0^1 \langle x \rangle_n \mathrm{d}x \quad \text{and} \quad c_n = \int_0^1 (x)_n \mathrm{d}x, \tag{1.1}$$

where

$$\langle x \rangle_n = \begin{cases} x(x-1)(x-2)\cdots(x-n+1), & n \ge 1\\ 1, & n = 0 \end{cases}$$
(1.2)

and

$$(x)_n = \begin{cases} x(x+1)(x+2)\cdots(x+n-1), & n \ge 1\\ 1, & n = 0 \end{cases}$$
(1.3)

are respectively called the falling and rising factorials. The coefficients expressing rising factorials $\langle x \rangle_n$ in terms of falling factorials $\langle x \rangle_n$ are called Lah numbers. Lah numbers have an interesting meaning in combinatorics: they count the number of ways a set of n elements can be partitioned into k nonempty linearly ordered subsets. Shortly speaking, Cauchy numbers play important roles in some fields, such as approximate integrals, Laplace summation formula, and difference-differential equations, and are also related to some famous numbers such as Stirling numbers, Bernoulli numbers, and harmonic numbers. Therefore, Cauchy numbers deserve to be studied.

It is known [1, p. 294] that Cauchy numbers of the second kind c_k may be generated by

$$\frac{-t}{(1-t)\ln(1-t)} = \sum_{n=0}^{\infty} c_n \frac{t^n}{n!}$$
(1.4)

which is equivalent to

$$\frac{t}{(1+t)\ln(1+t)} = \sum_{n=0}^{\infty} (-1)^n c_n \frac{t^n}{n!}.$$
(1.5)

The first few Cauchy numbers of the second kind c_k are

$$c_0 = 1,$$
 $c_1 = \frac{1}{2},$ $c_2 = \frac{5}{6},$ $c_3 = \frac{9}{4},$ $c_4 = \frac{251}{30},$
 $c_5 = \frac{475}{12},$ $c_6 = \frac{19087}{84}.$ (1.6)

Download English Version:

https://daneshyari.com/en/article/4593800

Download Persian Version:

https://daneshyari.com/article/4593800

Daneshyari.com