

Contents lists available at ScienceDirect

Journal of Number Theory

www.elsevier.com/locate/jnt

Blueprints — towards absolute arithmetic?

Oliver Lorscheid

Instituto Nacional de Matemática Pura e Aplicada, Estrada Dona Castorina 110, 22460-320 Rio de Janeiro, Brazil

ARTICLE INFO

Article history: Received 18 February 2013 Received in revised form 25 March 2014 Accepted 1 April 2014 Available online 16 June 2014 Communicated by Caterina Consani

 $\begin{array}{l} Keywords:\\ \mathbb{F}_1\text{-}Geometry\\ Compactification of Spec Z\\ Riemann zeta function\\ Arakelov divisors \end{array}$

ABSTRACT

One of the driving motivations for \mathbb{F}_1 -geometry is the hope to translate Weil's proof of the Riemann hypothesis from positive characteristics to number fields. The spectrum of \mathbb{Z} should find an interpretation as a curve over \mathbb{F}_1 , together with a completion $\overline{\operatorname{Spec} \mathbb{Z}}$. Intersection theory for divisors on the arithmetic surface $\overline{\operatorname{Spec}\mathbb{Z}} \times \overline{\operatorname{Spec}\mathbb{Z}}$ should allow us to mimic Weil's proof. It is possible to define $\overline{\operatorname{Spec} \mathbb{Z}}$ as a locally blueprinted space, which shares certain properties with its analog in positive characteristic. In particular, the arithmetic surface $\overline{\operatorname{Spec} \mathbb{Z}} \times \overline{\operatorname{Spec} \mathbb{Z}}$ is two-dimensional. We describe the local factors (including the Γ -factor) of the Riemann zeta function as integrals over the space of ideals of the stalks of the structure sheaf of $\overline{\operatorname{Spec} \mathbb{Z}}$. A comparison of line bundles on $\overline{\operatorname{Spec} \mathbb{Z}}$ with Arakelov divisor exhibits a second integral formula for the Riemann zeta function. We conclude this note with some remarks on étale cohomology for $\overline{\operatorname{Spec} \mathbb{Z}}$.

@ 2014 Published by Elsevier Inc.

CrossMark

0. Introduction

For a not yet systematically understood reason, many arithmetic laws have (conjectural) analogues for function fields and number fields. While in the function field case, these laws often have a conceptual explanation by means of a geometric interpretation,

http://dx.doi.org/10.1016/j.jnt.2014.04.006 0022-314X/© 2014 Published by Elsevier Inc.

E-mail address: lorschei@impa.br.

methods from algebraic geometry break down in the number field case. The mathematical area of \mathbb{F}_1 -geometry can be understood as a program to develop a geometric language that allows us to transfer the geometric methods from function fields to number fields.

A central problem of this kind, which lacks a proof in the number field case, is the Riemann hypothesis. The Riemann zeta function is defined as the Riemann sum $\zeta(s) = \sum_{n\geq 1} n^{-s}$, or, equivalently, as the Euler product $\prod_{p \text{ prime}} (1-p^{-s})^{-1}$ (these expressions converge for $\operatorname{Re}(s) > 1$, but can be continued to meromorphic functions on \mathbb{C}). A more symmetric expression with respect to its functional equation is given by the *completed zeta function*

$$\zeta^*(s) = \underbrace{\pi^{-s/2} \Gamma\left(\frac{s}{2}\right)}_{\zeta_{\infty}(s)} \cdot \prod_{p \text{ prime}} \underbrace{\frac{1}{1-p^{-s}}}_{\zeta_p(s)} \quad \text{(for } \operatorname{Re}(s) > 1\text{)}$$

where we call the factor $\zeta_p(s)$ the *local zeta factor at* p for $p \leq \infty$. The meromorphic continuation of $\zeta^*(s)$ to \mathbb{C} satisfies $\zeta^*(s) = \zeta^*(1-s)$. The fundamental conjecture is the

Riemann hypothesis: If $\zeta^*(s) = 0$, then $\operatorname{Re}(s) = 1/2$.

The analogous statement for the function field of a curve X over a finite field has been proven by André Weil more than seventy years ago. Weil's proof uses intersection theory for the self-product $X \times X$ and the Lefschetz fix-point formula for the absolute Frobenius action on X resp. $X \times X$. There were several attempts to translate the geometric methods of this proof into arithmetic arguments that would apply for number fields as well, but only with partial success so far.

A different approach, primarily due to Grothendieck, is the development of a theory of (mixed) motives, but such a theory relies on the solution of some fundamental problems. In particular, Deninger formulates in [2] a conjectural formalism for a *big site* \mathscr{T} of motives that should contain a compactification $\overline{\operatorname{Spec} \mathbb{Z}} = \operatorname{Spec} \mathbb{Z} \cup \{\infty\}$ of the arithmetic line, and he conjectured that the formula

$$\zeta^*(s) = \frac{\det_{\infty}(\frac{1}{2\pi}(s-\Theta)|H^1(\overline{\operatorname{Spec}\mathbb{Z}},\mathscr{O}_{\mathscr{T}}))}{\det_{\infty}(\frac{1}{2\pi}(s-\Theta)|H^0(\overline{\operatorname{Spec}\mathbb{Z}},\mathscr{O}_{\mathscr{T}})) \cdot \det_{\infty}(\frac{1}{2\pi}(s-\Theta)|H^2(\overline{\operatorname{Spec}\mathbb{Z}},\mathscr{O}_{\mathscr{T}}))}$$

holds true where det_{∞} denotes the regularized determinant, Θ is an endofunctor on \mathscr{T} and $H^i(-, \mathscr{O}_{\mathscr{T}})$ is a certain proposed cohomology. This description combines with Kurokawa's work on multiple zeta functions [7] to the hope that there are motives h^0 ("the absolute point"), h^1 and h^2 ("the absolute Tate motive") with zeta functions

$$\zeta_{h^w}(s) = \det_{\infty} \left(\frac{1}{2\pi} (s - \Theta) \Big| H^w(\overline{\operatorname{Spec} \mathbb{Z}}, \mathscr{O}_{\mathscr{T}}) \right)$$

The viewpoint of \mathbb{F}_1 -geometry is that $\overline{\operatorname{Spec} \mathbb{Z}}$ should be a curve over the elusive field \mathbb{F}_1 with one element. A good theory of geometry over \mathbb{F}_1 might eventually allow us to

Download English Version:

https://daneshyari.com/en/article/4593808

Download Persian Version:

https://daneshyari.com/article/4593808

Daneshyari.com