

Contents lists available at ScienceDirect

Journal of Number Theory

www.elsevier.com/locate/jnt

Biquadratic Pólya fields with only one quadratic Pólya subfield

Bahar Heidaryan, Ali Rajaei*

Department of Mathematics, Tarbiat Modares University, 14115-134, Tehran, Iran

A R T I C L E I N F O

Article history: Received 1 February 2014 Received in revised form 10 April 2014 Accepted 10 April 2014 Available online 4 June 2014 Communicated by Kenneth A. Ribet

MSC: 11R04 11R16 11R20

Keywords: Pólya fields Biquadratic fields Integer-valued polynomials

ABSTRACT

A number field is called a Pólya field if the module of integervalued polynomials over its integers has a regular basis. In this paper, we answer two open questions raised in [4] on biquadratic Pólya fields using some results of [8] and [2] on Galois cohomology of number fields. In particular, we find infinitely many biquadratic Pólya fields with only one quadratic Pólya subfield.

@ 2014 Elsevier Inc. All rights reserved.

1. Introduction

Let K be an algebraic number field and denote by \mathcal{O}_K its ring of integers. Consider the ring of integer-valued polynomials on \mathcal{O}_K :

 $\operatorname{Int}(\mathcal{O}_K) = \{ f \in K[X] \mid f(\mathcal{O}_K) \subseteq \mathcal{O}_K \}.$

* Corresponding author.

E-mail addresses: b.heidaryan@modares.ac.ir (B. Heidaryan), alirajaei@modares.ac.ir (A. Rajaei).

 $[\]label{eq:http://dx.doi.org/10.1016/j.jnt.2014.04.003} 0022-314X/© 2014$ Elsevier Inc. All rights reserved.

Definition 1.1. (See [6,8].) A number field K is said to be a Pólya field if the \mathcal{O}_K -module Int (\mathcal{O}_K) has a regular basis, i.e. a basis (f_n) such that for each $n \in \mathbb{N} \cup \{0\}$, deg $(f_n) = n$.

For each $n \in \mathbb{N}$, the leading coefficients of the polynomials in $\operatorname{Int}(\mathcal{O}_K)$ of degree n together with zero forms a fractional ideal of \mathcal{O}_K , denoted by $\mathfrak{J}_n(K)$ [3]. It is easy to see that K is a Pólya field if and only if the ideals $\mathfrak{J}_n(K)$ are principal [3].

Definition 1.2. (See [3].) The Pólya–Ostrowski group (or shortly, the Pólya group) of K is the subgroup Po(K) of Cl(K) (the class group of \mathcal{O}_K) generated by the classes of the ideals $\mathfrak{J}_n(K)$.

Now for each $q \geq 2$, let $\Pi_q(K)$ be the product of all maximal ideals of \mathcal{O}_K with norm q. If q is not the norm of an ideal, then define $\Pi_q(K)$ to be \mathcal{O}_K .

Ostrowski [5] proved that Po(K) is generated by the classes of the ideals $\Pi_q(K)$ in Cl(K) (see [3]). Therefore, if K is a Galois extension of \mathbb{Q} , then K is a Pólya field if and only if $\Pi_q(K)$ is principal for powers of ramified primes as q. Zantema [8] completely characterized quadratic Pólya fields (see [3]):

Proposition 1.3. A quadratic field $\mathbb{Q}[\sqrt{d}]$ for square-free d is a Pólya field if and only if d is one of the following:

- i) d = -1, d = 2, d = -2,
- ii) d = -p, where p is prime and $p \equiv 3 \pmod{4}$,
- iii) d = p, where p is an odd prime,
- iv) d = 2p, where p is prime and
 - either $p \equiv 3 \pmod{4}$
 - or $p \equiv 1 \pmod{4}$ and the fundamental unit has norm +1,
- v) d = pq, where p and q are primes and
 - either $p, q \equiv 3 \pmod{4}$
 - or $p, q \equiv 1 \pmod{4}$ and the fundamental unit has norm +1.

Theorem 1.4. (See [8].) Let K_1 and K_2 be finite Galois extensions of \mathbb{Q} , $L = K_1.K_2$, $K = K_1 \cap K_2$. For a prime p of K, let $e_i(p)$ be the ramification index of p in K_i , i = 1, 2. Then:

- a) If $gcd(e_1(p), e_2(p)) = 1$ for all primes p, and K_1 and K_2 are Pólya fields, then L is a Pólya field.
- b) If either [K₁ : K], [K₂ : K], [K : Q] are pairwise relatively prime, or K is Pólya and gcd([K₁ : K], [K₂ : K]) = 1, then K₁ and K₂ are Pólya fields if L is a Pólya field.

After quadratic fields, the case of biquadratic number fields seems a natural choice. The following theorem is proved in [4]: Download English Version:

https://daneshyari.com/en/article/4593833

Download Persian Version:

https://daneshyari.com/article/4593833

Daneshyari.com