# Biquadratic Pólya fields with only one quadratic Pólya subfield 

Bahar Heidaryan, Ali Rajaei *<br>Department of Mathematics, Tarbiat Modares University, 14115-134, Tehran, Iran

## A R T I C L E I N F O

## Article history:

Received 1 February 2014
Received in revised form 10 April
2014
Accepted 10 April 2014
Available online 4 June 2014
Communicated by Kenneth A. Ribet
$M S C$ :
11R04
11R16
11R20
Keywords:
Pólya fields
Biquadratic fields
Integer-valued polynomials

A B S T R A C T

A number field is called a Pólya field if the module of integervalued polynomials over its integers has a regular basis. In this paper, we answer two open questions raised in [4] on biquadratic Pólya fields using some results of [8] and [2] on Galois cohomology of number fields. In particular, we find infinitely many biquadratic Pólya fields with only one quadratic Pólya subfield.
© 2014 Elsevier Inc. All rights reserved.

## 1. Introduction

Let $K$ be an algebraic number field and denote by $\mathcal{O}_{K}$ its ring of integers. Consider the ring of integer-valued polynomials on $\mathcal{O}_{K}$ :

$$
\operatorname{Int}\left(\mathcal{O}_{K}\right)=\left\{f \in K[X] \mid f\left(\mathcal{O}_{K}\right) \subseteq \mathcal{O}_{K}\right\}
$$

[^0]Definition 1.1. (See $[6,8]$.) A number field $K$ is said to be a Pólya field if the $\mathcal{O}_{K}$-module $\operatorname{Int}\left(\mathcal{O}_{K}\right)$ has a regular basis, i.e. a basis $\left(f_{n}\right)$ such that for each $n \in \mathbb{N} \cup\{0\}, \operatorname{deg}\left(f_{n}\right)=n$.

For each $n \in \mathbb{N}$, the leading coefficients of the polynomials in $\operatorname{Int}\left(\mathcal{O}_{K}\right)$ of degree $n$ together with zero forms a fractional ideal of $\mathcal{O}_{K}$, denoted by $\mathfrak{J}_{n}(K)$ [3]. It is easy to see that $K$ is a Pólya field if and only if the ideals $\mathfrak{J}_{n}(K)$ are principal [3].

Definition 1.2. (See [3].) The Pólya-Ostrowski group (or shortly, the Pólya group) of $K$ is the subgroup $\operatorname{Po}(K)$ of $C l(K)$ (the class group of $\left.\mathcal{O}_{K}\right)$ generated by the classes of the ideals $\mathfrak{J}_{n}(K)$.

Now for each $q \geq 2$, let $\Pi_{q}(K)$ be the product of all maximal ideals of $\mathcal{O}_{K}$ with norm $q$. If $q$ is not the norm of an ideal, then define $\Pi_{q}(K)$ to be $\mathcal{O}_{K}$.

Ostrowski [5] proved that $\operatorname{Po}(K)$ is generated by the classes of the ideals $\Pi_{q}(K)$ in $C l(K)$ (see [3]). Therefore, if $K$ is a Galois extension of $\mathbb{Q}$, then $K$ is a Pólya field if and only if $\Pi_{q}(K)$ is principal for powers of ramified primes as $q$. Zantema [8] completely characterized quadratic Pólya fields (see [3]):

Proposition 1.3. A quadratic field $\mathbb{Q}[\sqrt{d}]$ for square-free $d$ is a Pólya field if and only if $d$ is one of the following:
i) $d=-1, d=2, d=-2$,
ii) $d=-p$, where $p$ is prime and $p \equiv 3(\bmod 4)$,
iii) $d=p$, where $p$ is an odd prime,
iv) $d=2 p$, where $p$ is prime and

- either $p \equiv 3(\bmod 4)$
- or $p \equiv 1(\bmod 4)$ and the fundamental unit has norm +1 ,
v) $d=p q$, where $p$ and $q$ are primes and
- either $p, q \equiv 3(\bmod 4)$
- or $p, q \equiv 1(\bmod 4)$ and the fundamental unit has norm +1 .

Theorem 1.4. (See [8].) Let $K_{1}$ and $K_{2}$ be finite Galois extensions of $\mathbb{Q}, L=K_{1} \cdot K_{2}$, $K=K_{1} \cap K_{2}$. For a prime $p$ of $K$, let $e_{i}(p)$ be the ramification index of $p$ in $K_{i}, i=1,2$. Then:
a) If $\operatorname{gcd}\left(e_{1}(p), e_{2}(p)\right)=1$ for all primes $p$, and $K_{1}$ and $K_{2}$ are Pólya fields, then $L$ is a Pólya field.
b) If either $\left[K_{1}: K\right],\left[K_{2}: K\right],[K: \mathbb{Q}]$ are pairwise relatively prime, or $K$ is Pólya and $\operatorname{gcd}\left(\left[K_{1}: K\right],\left[K_{2}: K\right]\right)=1$, then $K_{1}$ and $K_{2}$ are Pólya fields if $L$ is a Pólya field.

After quadratic fields, the case of biquadratic number fields seems a natural choice. The following theorem is proved in [4]:

# https://daneshyari.com/en/article/4593833 

Download Persian Version:

## https://daneshyari.com/article/4593833

## Daneshyari.com


[^0]:    * Corresponding author.

    E-mail addresses: b.heidaryan@modares.ac.ir (B. Heidaryan), alirajaei@modares.ac.ir (A. Rajaei).

