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1. Introduction

For a non-zero Laurent polynomial P(z) € C[z,z7!], the k-higher Mahler measure
of P is defined [4] as

1

mg(P) = /logk|P(e2”t)|dt.
0

* Corresponding author.
E-mail address: arunabha.biswas@Qttu.edu (A. Biswas).

http://dx.doi.org/10.1016/j.jnt.2014.04.015
0022-314X/© 2014 Elsevier Inc. All rights reserved.


http://dx.doi.org/10.1016/j.jnt.2014.04.015
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/jnt
mailto:arunabha.biswas@ttu.edu
http://dx.doi.org/10.1016/j.jnt.2014.04.015
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jnt.2014.04.015&domain=pdf

358 A. Biswas, C. Monico / Journal of Number Theory 143 (2014) 357-362

For k =1 this coincides with the classical (log) Mahler measure defined as

m(P) :10g|a|+Zlog(max{1,|rj|})7 for P(z H z—15),
j=1 Jj=1

since by Jensen’s formula m(P) = my(P) [3].

Though classical Mahler measure was studied extensively, higher Mahler measure was
introduced and studied very recently by Kurokawa, Lalin and Ochiai [4] and Akatsuka [1].
It is very difficult to evaluate k-higher Mahler measure for polynomials except few specific
examples shown in [1] and [4], but it is relatively easy to find their limiting values.

In [5] Lalin and Sinha answered Lehmer’s question [3] for higher Mahler measure by
finding non-trivial lower bounds for my, on Z[z] for k > 2.

In [2] it has been shown using Akatsuka’s zeta function of [4] that for |a| = 1,
|mi(z + a)|/k! — 1/7 as k — oo. In this paper we generalize this result by comput-
ing the same limit for an arbitrary Laurent polynomial P(z) € C|z, 2~ !] using a different
technique.

Theorem 1.1. Let P(z) € Clz, 27| be a Laurent polynomial, possibly with repeated roots.
Let z1, ..., 2z, be the distinct roots of P. Then

. Imk
1
R s PN o]
where S is the complex unit circle |z| = 1, and the right-hand side is taken as oo if

P'(zj) =0 for some z; € S, i.e., if P has a repeated root on S*.
2. Proof of the theorem

We first prove several lemmas which essentially show that the integrand may be
linearly approximated near the roots of P on S?'.

Lemma 2.1. Let P(z) € C[z,271] be a Laurent polynomial and A C [0,1] be a closed set
such that P(e*™) # 0 for allt € A. Then

Jim k—/log |P(e’™)|dt = 0.
A

Proof. Since A is closed, due to the periodicity of €>* and continuity of P(e?"%) there
exist constants b and B such that 0 < b < |P(e*™)| < B on A. Then for each positive in-
teger k, (log" | P(e2™!)|) /k! is bounded between (log® b)/k! and (log® B)/k!, and therefore
(1/Kk!) [, log" |P(e?7*)| dt is bounded between (uAlog®b)/k! and (uAlog" B)/k!, where
1A is the Lebesgue measure of A. The result follows by letting & tend to infinity. O
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