

Contents lists available at ScienceDirect

Journal of Number Theory

Limiting value of higher Mahler measure

Arunabha Biswas*, Chris Monico

Department of Mathematics & Statistics, Texas Tech University, Lubbock, TX 79409, USA

ARTICLE INFO

Article history:
Received 8 November 2013
Received in revised form 1 April 2014
Accepted 3 April 2014
Available online 5 June 2014
Communicated by David Goss

Keywords: Mahler measure Higher Mahler measure

ABSTRACT

We consider the k-higher Mahler measure $m_k(P)$ of a Laurent polynomial P as the integral of $\log^k |P|$ over the complex unit circle. In this paper we derive an explicit formula for the value of $|m_k(P)|/k!$ as $k \to \infty$.

 $\ \, \odot$ 2014 Elsevier Inc. All rights reserved.

1. Introduction

For a non-zero Laurent polynomial $P(z) \in \mathbb{C}[z,z^{-1}]$, the k-higher Mahler measure of P is defined [4] as

$$m_k(P) = \int_0^1 \log^k |P(e^{2\pi it})| dt.$$

E-mail address: arunabha.biswas@ttu.edu (A. Biswas).

^{*} Corresponding author.

For k = 1 this coincides with the classical (log) Mahler measure defined as

$$m(P) = \log|a| + \sum_{j=1}^{n} \log(\max\{1, |r_j|\}), \text{ for } P(z) = a \prod_{j=1}^{n} (z - r_j),$$

since by Jensen's formula $m(P) = m_1(P)$ [3].

Though classical Mahler measure was studied extensively, higher Mahler measure was introduced and studied very recently by Kurokawa, Lalín and Ochiai [4] and Akatsuka [1]. It is very difficult to evaluate k-higher Mahler measure for polynomials except few specific examples shown in [1] and [4], but it is relatively easy to find their limiting values.

In [5] Lalín and Sinha answered Lehmer's question [3] for higher Mahler measure by finding non-trivial lower bounds for m_k on $\mathbb{Z}[z]$ for $k \geq 2$.

In [2] it has been shown using Akatsuka's zeta function of [4] that for |a|=1, $|m_k(z+a)|/k! \to 1/\pi$ as $k \to \infty$. In this paper we generalize this result by computing the same limit for an arbitrary Laurent polynomial $P(z) \in \mathbb{C}[z,z^{-1}]$ using a different technique.

Theorem 1.1. Let $P(z) \in \mathbb{C}[z, z^{-1}]$ be a Laurent polynomial, possibly with repeated roots. Let z_1, \ldots, z_n be the distinct roots of P. Then

$$\lim_{k \to \infty} \frac{|m_k(P)|}{k!} = \frac{1}{\pi} \sum_{z_j \in S^1} \frac{1}{|P'(z_j)|},$$

where S^1 is the complex unit circle |z| = 1, and the right-hand side is taken as ∞ if $P'(z_j) = 0$ for some $z_j \in S^1$, i.e., if P has a repeated root on S^1 .

2. Proof of the theorem

We first prove several lemmas which essentially show that the integrand may be linearly approximated near the roots of P on S^1 .

Lemma 2.1. Let $P(z) \in \mathbb{C}[z, z^{-1}]$ be a Laurent polynomial and $A \subseteq [0, 1]$ be a closed set such that $P(e^{2\pi it}) \neq 0$ for all $t \in A$. Then

$$\lim_{k \to \infty} \frac{1}{k!} \int_{A} \log^{k} |P(e^{2\pi i t})| dt = 0.$$

Proof. Since A is closed, due to the periodicity of $e^{2\pi it}$ and continuity of $P(e^{2\pi it})$ there exist constants b and B such that $0 < b \le |P(e^{2\pi it})| \le B$ on A. Then for each positive integer k, $(\log^k |P(e^{2\pi it})|)/k!$ is bounded between $(\log^k b)/k!$ and $(\log^k B)/k!$, and therefore $(1/k!) \int_A \log^k |P(e^{2\pi it})| \, \mathrm{d}t$ is bounded between $(\mu A \log^k b)/k!$ and $(\mu A \log^k B)/k!$, where μA is the Lebesgue measure of A. The result follows by letting k tend to infinity. \square

Download English Version:

https://daneshyari.com/en/article/4593838

Download Persian Version:

https://daneshyari.com/article/4593838

<u>Daneshyari.com</u>