

Contents lists available at ScienceDirect

Journal of Number Theory

www.elsevier.com/locate/jnt

An exact degree for multivariate special polynomials

Rudolph Bronson Perkins

Institut Camille Jordan, Université Claude Bernard Lyon 1, 43 boulevard du 11 novembre 1918, 69622 Villeurbanne cedex, France

ARTICLE INFO

Article history: Received 30 January 2014 Accepted 17 February 2014 Available online 29 April 2014 Communicated by David Goss

Keywords:
Special polynomials
Function field arithmetic
Pellarin's L-series
Positive characteristic

ABSTRACT

We introduce certain special polynomials in an arbitrary number of indeterminates over a finite field. These polynomials generalize the special polynomials associated to the Goss zeta function and Goss–Dirichlet L-functions over the ring of polynomials in one indeterminate over a finite field and also capture the special values at non-positive integers of L-series associated to Drinfeld modules over Tate algebras defined over the same ring. We compute the exact degree in t_0 of these special polynomials and show that this degree is an invariant for a natural action of Goss' group of digit permutations. Finally, we characterize the vanishing of these multivariate special polynomials at $t_0 = 1$. This gives rise to a notion of trivial zeros for our polynomials generalizing that of the Goss zeta function mentioned above.

© 2014 Elsevier Inc. All rights reserved.

1. Introduction

1.1. Notation

Let \mathbb{F}_q be the finite field with q elements of positive characteristic p, and let θ be an indeterminate. Our interest is in the ring $A := \mathbb{F}_q[\theta]$. We denote by A_+ the set of

E-mail address: perkins@math.univ-lyon1.fr.

monic polynomials in A, and for all $d \geq 0$ we write $A_+(d)$ for those elements of A_+ whose degree in θ equals d. We write $\overline{\mathbb{F}}_q$ for the algebraic closure of \mathbb{F}_q , and we fix an embedding of $\overline{\mathbb{F}}_q$ into the algebraic closure of $\mathbb{F}_q(\theta)$.

We shall say a p-adic integer β is written in base q whenever we write $\beta = \sum_{i \geq 0} \beta_i q^i$ with $0 \leq \beta_i < q$ for all $i \geq 0$. We define the length of a positive integer β , written in base q as above, to be $l(\beta) := \sum_{i \geq 0} \beta_i$. Of course, note the dependence on q that we omit. Finally, for a rational number α , we let $\lfloor \alpha \rfloor \in \mathbb{Z}$ denote the greatest integer less than or equal to α .

1.2. Multivariate special polynomials

The results of this note expand upon the author's work in [13] and have been ported over from the author's dissertation [12]. We study the *multivariate special polynomials*, defined for non-negative integers β_1, \ldots, β_s first by the formal series

$$z(\beta_1, \dots, \beta_s, t_0) := \sum_{d \ge 0} t_0^d \sum_{a \in A_+(d)} \chi_1(a)^{\beta_1} \cdots \chi_s(a)^{\beta_s} \in \mathbb{F}_q[t_1, \dots, t_s][[t_0]].$$

Here, for all $a \in A$ and i = 1, ..., s, the symbols $\chi_i(a)$ stand for the images of the maps

$$\chi_i: A \to \mathbb{F}_q[t_i] \subseteq \mathbb{F}_q[t_1, \dots, t_s]$$

determined by $\theta \mapsto t_i$. It follows from our recursive formula, Proposition 2.1, that these power series are in fact polynomials in t_0 .

1.3. A comment on notation

Goss points out to us that s is traditionally the coordinate used on his "complex plane" \mathbb{S}_{∞} (see [5, Chapter 8] for the definition). In keeping with the established notation so far in the theory of Pellarin's multivariate L-series, we will always use s to denote a non-negative integer. As \mathbb{S}_{∞} does not appear in this paper, we do not expect any confusion to arise.

1.4. Drinfeld modules over Tate algebras

In [2], Anglès, Pellarin and Tavares–Ribeiro introduce the notion of Drinfeld modules over Tate algebras. The authors associate L-series to these new Drinfeld modules, generalizing the multivariate L-series studied in [1,8,9,11]. They mention in Example 4.1.3 that the recursive formula of this note (Proposition 2.1) implies that the negative special values of their L-series are finite K-linear combinations of elements that are algebraic over $\mathbb{F}_q(t_0,t_1,\ldots,t_s)$. Let us briefly describe the connection.

Download English Version:

https://daneshyari.com/en/article/4593900

Download Persian Version:

https://daneshyari.com/article/4593900

<u>Daneshyari.com</u>