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Binomial coefficients can be expressed in terms of multinomial
coefficients as sums over integer partitions. This approach
allows us to introduce new upper bounds for the number of
partitions into a given number of parts.

© 2014 Elsevier Inc. All rights reserved.

1. Introduction

A composition of a positive integer n is a way of writing n as a sum of positive integers,
i.e.,

n = λ1 + λ2 + · · · + λk.
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When the order of integers λi does not matter, the representation (1) is known as an
integer partition [1] and can be rewritten as

n = t1 + 2t2 + · · · + ntn,

where each positive integer i appears ti times in the partition. The number of parts of
this partition is given by

t1 + t2 + · · · + tn = k.

The function giving the number of unrestricted partitions of n is usually denoted by
p(n). We consider p(0) = 1 and p(n) = 0 for any negative integer n. The number of
partitions of n into k parts is denoted in this paper by p(n, k). It is clear that

n∑
k=1

p(n, k) = p(n).

A connection between binomial coefficients and multinomial coefficients is given by
the following formula published by N.J. Fine [3, Ex. 5, p. 87]: for n, k > 0,

∑
t1+2t2+···+ntn=n
t1+t2+···+tn=k

(
k

t1, t2, . . . , tn

)
=

(
n− 1
k − 1

)
. (1)

In fact, the number of integer compositions of n is 2n−1 and the number with exactly k

parts is
(
n−1
k−1

)
. If we “forget” the order of the parts, we turn a composition into a partition

and the number of compositions corresponding to a given partition becomes a matter of
arrangements whose answer is a multinomial coefficient. So

(
n−1
k−1

)
can be expressed as

a sum over integer partitions, which is true for any binomial coefficient. We see that the
number of terms in the left hand side of (1) is equal to p(n, k).

If k is a divisor of n, then there is only one partition t1 + 2t2 + · · · + ntn = n such
that t1 + t2 + · · · + tn = k and (

k

t1, t2, . . . , tn

)
= 1.

On the other hand, if n mod k > 0 then for any partition t1 + 2t2 + · · · + ntn = n such
that t1 + t2 + · · · + tn = k, we have(

k

t1, t2, . . . , tn

)
> 1.

Thus by (1), we deduce the following inequality

p(n, k) � 1
2

(
n− 1
k − 1

)
+ 1

2δ0,n mod k, (2)

where δi,j is the Kronecker delta.
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