On additive complement of a finite set

Sándor Z. Kiss ${ }^{\text {a,b,*,1 }}$, Eszter Rozgonyi ${ }^{\text {a,2 }}$, Csaba Sándor ${ }^{\text {a,3 }}$
${ }^{\text {a }}$ Institute of Mathematics, Budapest University of Technology and Economics, H-1529 B.O. Box, Hungary
${ }^{\text {b }}$ Computer and Automation Research Institute of the Hungarian Academy of Sciences, Budapest H-1111, Lágymányosi street 11, Hungary

A R T I C L E I N F O

Article history:

Received 8 May 2013
Received in revised form 12
September 2013
Accepted 12 September 2013
Available online 20 November 2013
Communicated by David Goss

$M S C$:

primary 11B13
secondary 11P99
Keywords:
Additive number theory
Additive complement
Finite sets

A B S T R A C T

We say the sets of nonnegative integers \mathcal{A} and \mathcal{B} are additive complements if their sum contains all sufficiently large integers. In this paper we prove a conjecture of Chen and Fang about additive complement of a finite set by using analytic tools.
© 2013 Elsevier Inc. All rights reserved.

[^0]
1. Introduction

Let \mathbb{N} denote the set of positive integers and let $\mathcal{A} \subseteq \mathbb{N}$ and $\mathcal{B} \subseteq \mathbb{N}$ be finite or infinite sets. Let $R_{\mathcal{A}+\mathcal{B}}(n)$ denote the number of solutions of the equation

$$
a+b=n, \quad a \in \mathcal{A}, b \in \mathcal{B}
$$

We put

$$
A(n)=\sum_{\substack{a \leq n \\ a \in \mathcal{A}}} 1 \quad \text { and } \quad B(n)=\sum_{\substack{b \leq n \\ b \in \mathcal{B}}} 1
$$

respectively. We say a set $\mathcal{B} \subseteq \mathbb{N}$ is an additive complement of the set $\mathcal{A} \subseteq \mathbb{N}$ if every sufficiently large $n \in \mathbb{N}$ can be represented in the form $a+b=n, a \in \mathcal{A}, b \in \mathcal{B}$, i.e., $R_{\mathcal{A}+\mathcal{B}}(n) \geqslant 1$ for $n \geqslant n_{0}$. Additive complement is an important concept in additive number theory, in the past few decades it was studied by many authors [4,6,8,9]. In [9] Sárközy and Szemerédi proved a conjecture of Danzer [4], namely they proved that for infinite additive complements \mathcal{A} and \mathcal{B} if

$$
\limsup _{x \rightarrow+\infty} \frac{A(x) B(x)}{x} \leqslant 1
$$

then

$$
\liminf _{x \rightarrow+\infty}(A(x) B(x)-x)=+\infty
$$

In [1] Chen and Fang improved this result and they proved that if

$$
\limsup _{x \rightarrow+\infty} \frac{A(x) B(x)}{x}>2, \quad \text { or } \quad \limsup _{x \rightarrow+\infty} \frac{A(x) B(x)}{x}<\frac{5}{4}
$$

then

$$
\lim _{x \rightarrow+\infty}(A(x) B(x)-x)=+\infty
$$

In the other direction they proved in [2] that for any integer $a \geqslant 2$, there exist two infinite additive complements \mathcal{A} and \mathcal{B} such that

$$
\limsup _{x \rightarrow+\infty} \frac{A(x) B(x)}{x}=\frac{2 a+2}{a+2}
$$

but there exist infinitely many positive integers x such that $A(x) B(x)-x=1$. In [3] they studied the case when \mathcal{A} is a finite set. In this case the situation is different from

https://daneshyari.com/en/article/4593921

Download Persian Version:

https://daneshyari.com/article/4593921

Daneshyari.com

[^0]: * Corresponding author.

 E-mail addresses: kisspest@cs.elte.hu (S.Z. Kiss), reszti@math.bme.hu (E. Rozgonyi), csandor@math.bme.hu (C. Sándor).
 ${ }^{1}$ This author was supported by the OTKA Grant No. K77476 and No. NK105645.
 ${ }^{2}$ The work reported in the paper has been developed in the framework of the project "Talent care and cultivation in the scientific workshops of BME" project. This project is supported by the grant TÁMOP-4.2.2.B-10/1-2010-0009.
 ${ }_{3}$ This author was supported by the OTKA Grant No. K81658.

