

Contents lists available at ScienceDirect

### Journal of Number Theory



www.elsevier.com/locate/jnt

# The projective envelope of a cuspidal representation of a finite linear group

David Paige

#### ARTICLE INFO

Article history: Received 26 February 2013 Received in revised form 15 October 2013 Accepted 17 October 2013 Available online 13 December 2013 Communicated by Francesco Calegari

Keywords: Cuspidal representations Finite linear groups Bernstein center

#### ABSTRACT

Let  $\ell$  be a prime and let q be a prime power not divisible by  $\ell$ . Put  $G = \operatorname{GL}_n(\mathbb{F}_q)$  and fix an irreducible  $\overline{\mathbb{F}}_{\ell}[G]$ -representation,  $\overline{\pi}$ , such that  $\overline{\pi}$  is cuspidal but not supercuspidal. We compute the W( $\overline{\mathbb{F}}_{\ell}$ )[G]-endomorphism ring of the projective envelope of  $\overline{\pi}$  under the assumption that  $\ell > n > 1$ . Our computations provide evidence for a conjecture of Helm relating the Bernstein center to the deformation theory of Galois representations (see [9]).

© 2013 Elsevier Inc. All rights reserved.

#### Contents

| 1.     | Introduction                                  | 354 |
|--------|-----------------------------------------------|-----|
| 2.     | A characterization of the projective envelope | 357 |
| 3.     | Invariants in a cyclotomic algebra            | 363 |
| 4.     | The central action of the group algebra       | 367 |
| Ackno  | wledgments                                    | 374 |
| Refere | ences                                         | 374 |
|        |                                               |     |

#### 1. Introduction

Let p and  $\ell$  be distinct primes and suppose that F is a p-adic field. One of the most celebrated results of modern number theory is the ( $\ell$ -adic) local Langlands correspondence on F. The local Langlands correspondence is a canonical well-behaved bijection

$$\operatorname{Irr}_{\ell}(\operatorname{GL}_n(F)) \to \operatorname{Rep}_{\ell}^n(W_F)$$

where  $\operatorname{Rep}_{\ell}^{n}(W_{F})$  is the set of continuous *n*-dimensional Frobenius semi-simple representations of the Weil group,  $W_{F}$ , of F over  $\overline{\mathbb{Q}}_{\ell}$  (a fixed algebraic closure of  $\mathbb{Q}_{\ell}$ ) and  $\operatorname{Irr}_{\ell}(\operatorname{GL}_{n}(F))$  is the set of irreducible admissible representations over  $\overline{\mathbb{Q}}_{\ell}$  of the general linear group,  $\operatorname{GL}_{n}(F)$  (see [7,10] and Section 32 of Chapter 7 of [3]).

Certainly, part of the importance of the local Langlands correspondence is that notions on one side often correspond nicely with notions on the other. In particular, the notion of semi-simplification on the Weil side corresponds with the notion of supercuspidal support on the general linear side, a bijection known as the ( $\ell$ -adic) semi-simple Langlands correspondence.

The semi-simple local Langlands correspondence is important partially because, unlike the local Langlands correspondence itself, it translates well to the case of modular representations. Indeed, denoting by  $\overline{\mathbb{F}}_{\ell}$  the residue field of  $\overline{\mathbb{Q}}_{\ell}$ , Vignéras has shown the following:

**Theorem.** There is a unique bijection between supercuspidal supports of  $GL_n(F)$ -representations over  $\overline{\mathbb{F}}_{\ell}$  and n-dimensional semi-simple Weil representations over  $\overline{\mathbb{F}}_{\ell}$  that is compatible with the semi-simple local Langlands correspondence and reduction modulo  $\ell$ .

#### **Proof.** See [17]. $\Box$

For obvious reasons, Vignéras' correspondence is often called the  $\ell$ -modular semisimple local Langlands correspondence.

One is led to consider whether these correspondences can be understood geometrically. To fix ideas, let  $\bar{\pi}$  be an irreducible representation of  $\operatorname{GL}_n(F)$  over  $\bar{\mathbb{F}}_{\ell}$  such that  $\bar{\pi}$  is cuspidal but not supercuspidal (we will avoid the supercuspidal case as it has already been considered by Dat; see Section B.1 of [4], particularly the proposition in B.1.6). Denote by  $\bar{\rho}$  the semi-simple Weil representation over  $\bar{\mathbb{F}}_{\ell}$  corresponding to  $\bar{\pi}$  via the  $\ell$ -modular semi-simple local Langlands correspondence. Attached to  $\bar{\rho}$  is the framed universal deformation ring,  $R_{\bar{\rho}}^{\Box}$ , which parameterizes lifts of  $\bar{\rho}$  together with a choice of basis. One is led to consider whether a corresponding algebraic object can be found on the general linear side of local Langlands.

An important construction to this end is the *Bernstein center*, which for any category  $\mathcal{A}$ , is the endomorphism ring of the identity functor on  $\mathcal{A}$ . Classically, the Bernstein center has been important in the study of representations of  $\operatorname{GL}_n(F)$ . In particular, Bernstein and Deligne were able calculate the center of the category,  $\operatorname{Rep}_{\mathbb{C}}(\operatorname{GL}_n(F))$ , of smooth  $\mathbb{C}$ -representations of  $\operatorname{GL}_n(F)$  (see [1]). Moreover, they give a decomposition of the category into a product of blocks (called Bernstein components) and a description of the center of each block, which they show to be a finitely generated  $\mathbb{C}$ -algebra. These results can also be translated to the field  $\overline{\mathbb{Q}}_{\ell}$ .

In consideration of a geometric interpretation of the local Langlands correspondence, Helm has considered the situation for representations over the Witt vecDownload English Version:

## https://daneshyari.com/en/article/4593930

Download Persian Version:

https://daneshyari.com/article/4593930

Daneshyari.com