Mean divisibility of multinomial coefficients

Shigeki Akiyama ${ }^{1}$
Institute of Mathematics, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8571, Japan

A R T I C L E I N F O

Article history:

Received 15 December 2012
Received in revised form 15 August 2013
Accepted 18 October 2013
Available online 14 December 2013
Communicated by Jeffrey C.
Lagarias

Keywords:

Multinomial coefficient
Divisibility
Riemann sum

A B S T R A C T

Let m_{1}, \ldots, m_{s} be positive integers. Consider the sequence defined by multinomial coefficients:

$$
a_{n}=\binom{\left(m_{1}+m_{2}+\cdots+m_{s}\right) n}{m_{1} n, m_{2} n, \ldots, m_{s} n} .
$$

Fix a positive integer $k \geqslant 2$. We show that there exists a positive integer $C(k)$ such that

$$
\frac{\prod_{n=1}^{t} a_{k n}}{\prod_{n=1}^{t} a_{n}} \in \frac{1}{C(k)} \mathbb{Z}
$$

for all positive integer t, if and only if $G C D\left(m_{1}, \ldots, m_{s}\right)=1$.
© 2013 Elsevier Inc. All rights reserved.

1. Mean divisibility

A sequence $\left(a_{n}\right)(n=1,2, \ldots)$ of non-zero integers is divisible if $n \mid m$ implies $a_{n} \mid a_{m}$. It is strongly divisible if $G C D\left(a_{n}, a_{m}\right)=\left|a_{G C D(n, m)}\right|$. Such divisibility attracts number theorists for a long time and a lot of papers dealt with properties of such sequences

[^0][17,16,4,3,9,1,11]. Primitive divisors of elliptic divisibility sequences and sequences arose in arithmetic dynamics are recently studied in detail [$6,12,19]$. In this paper, we introduce a weaker terminology which seems not studied before. We say that $\left(a_{n}\right)$ is almost mean k-divisible, if there is a positive integer $C=C(k)$ such that $\left(\prod_{n=1}^{t} a_{k n}\right) /\left(\prod_{i=1}^{t} a_{n}\right) \in \frac{1}{C} \mathbb{Z}$ for any positive integer t. In particular, $\left(a_{n}\right)$ is mean divisible if $\prod_{n=1}^{t} a_{n} \mid \prod_{i=1}^{t} a_{k n}$ for any positive integer k and t. Clearly if $\left(a_{n}\right)$ is divisible, then it is mean divisible. By definition, if a sequence is almost mean k-divisible for all k with the constant $C(k)=1$, then it is mean divisible. We are interested in giving non-trivial examples of (almost) mean divisible sequences. In fact, we show that sequences defined by multinomial coefficients give such examples. Let m_{1}, \ldots, m_{s} be positive integers. A multinomial sequence is defined by
$$
a_{n}=\binom{\left(m_{1}+m_{2}+\cdots+m_{s}\right) n}{m_{1} n, m_{2} n, \ldots, m_{s} n}=\frac{\left(\left(m_{1}+m_{2}+\cdots+m_{s}\right) n\right)!}{\left(m_{1} n\right)!\left(m_{2} n\right)!\ldots\left(m_{s} n\right)!} .
$$

Theorem 1. If $G C D\left(m_{1}, m_{2}, \ldots, m_{s}\right)=1$, then the multinomial sequence is almost mean k-divisible for all k.

The proof relies on an interesting integral inequality (Lemma 3) and its approximation by Riemann sums. Here are some illustrations:

Corollary 2.

$$
\frac{\prod_{n=1}^{t}\binom{10 n}{4 n}}{\prod_{n=1}^{t}\binom{5 n}{2 n}} \in \frac{1}{11} \mathbb{Z}, \quad \frac{\prod_{n=1}^{t}\binom{9 n}{3 n}}{\prod_{n=1}^{t}\binom{3 n}{n}} \in \frac{1}{5} \mathbb{Z}, \quad \frac{\prod_{n=1}^{t}\binom{28 n}{4 n, 8 n, 16 n}}{\prod_{n=1}^{t}\binom{7 n}{n, 2 n, 4 n}} \in \mathbb{Z}
$$

for any positive integer t.

Readers will see that Figs. 1, 2 and 3 in Section 6 essentially tell why these are true. The constant $C(k)$ is computed by an algorithm based on the proof of Theorem 1. However it is not so easy to identify the set of t 's at which the denominator actually appears. For the first example, there are infinitely many t with denominator 11 , but the denominator 5 in the second example appears only when $t=2$. See Section 6 for details. We can also show

Theorem 3. If $G C D\left(m_{1}, m_{2}, \ldots, m_{s}\right)>1$, then the multinomial sequence is not almost mean k-divisible for all k.

Thus for a given k, a multinomial sequence is almost mean k-divisible if and only if $G C D\left(m_{1}, m_{2}, \ldots, m_{s}\right)=1$ holds. For e.g.,

https://daneshyari.com/en/article/4593936

Download Persian Version:

https://daneshyari.com/article/4593936

Daneshyari.com

[^0]: E-mail address: akiyama@math.tsukuba.ac.jp.
 ${ }^{1}$ The author is supported by the Japanese Society for the Promotion of Science (JSPS), Grant in aid 24540012.

