

Contents lists available at ScienceDirect

Journal of Number Theory

On additive complements. III

Jin-Hui Fang ^{a,*}, Yong-Gao Chen ^b

ARTICLE INFO

Article history:

Received 30 November 2012 Received in revised form 12 January 2014

Accepted 12 January 2014 Available online 11 March 2014 Communicated by David Goss

MSC: 1B13 11B34

Keywords:
Additive complements
Sequences
Counting functions

ABSTRACT

Text. Two infinite sequences A and B of non-negative integers are called additive complements, if their sum contains all sufficiently large integers. Let A(x) and B(x) be the counting functions of A and B. In 1994, Sárközy and Szemerédi proved that, for additive complements A and B, if $\limsup A(x)B(x)/x \leqslant 1$, then $A(x)B(x)-x \to +\infty$ as $x \to +\infty$. In 2010, the authors generalized this result and proved that if $\limsup A(x)B(x)/x < 5/4$ or $\limsup A(x)B(x)/x > 2$, then $A(x)B(x)-x \to +\infty$ as $x \to +\infty$. In 2011, the authors pointed out that the constant 2 cannot be improved. In this paper, we improve 5/4 to $3-\sqrt{3}$.

Video. For a video summary of this paper, please click here or visit http://youtu.be/fSTUWhPJdtw.

© 2014 Elsevier Inc. All rights reserved.

1. Introduction

Two infinite sequences A and B of non-negative integers are called *additive complements*, if their sum contains all sufficiently large integers. Let A(x) and B(x) be the counting functions of A and B. For the construction of additive complements A and B with $A(x)B(x) \sim x$, one may refer to [13].

E-mail addresses: fangjinhui1114@163.com (J.-H. Fang), ygchen@njnu.edu.cn (Y.-G. Chen).

^a Department of Mathematics, Nanjing University of Information Science ℰ Technology, Nanjing 210044, Jiangsu, People's Republic of China

^b School of Mathematics Sciences and Institute of Mathematics, Nanjing Normal University, Nanjing 210023, Jiangsu, People's Republic of China

^{*} Corresponding author.

Starting out from a problem of Hanani and Erdős [4,5], in 1964, Danzer [3] conjectured that, for additive complements A and B, if

$$\limsup_{x \to \infty} \frac{A(x)B(x)}{x} \leqslant 1,$$

then

$$A(x)B(x) - x \to +\infty \quad \text{as } x \to +\infty.$$
 (1.1)

(See also [6], [9, p. 75] and [11].) In [14], Sárközy and Szemerédi proved this conjecture. In 2010, the authors [7] generalized this result and proved the following result.

Theorem A. For additive complements A, B, if

$$\limsup_{x\to\infty}\frac{A(x)B(x)}{x}>2\quad or\quad \limsup_{x\to\infty}\frac{A(x)B(x)}{x}<\frac{5}{4},$$

then (1.1) must hold.

In 2011, the authors pointed out that the constant 2 in above Theorem A cannot be improved. In fact, the following result is proved in [1].

Theorem B. For any integer a with $a \ge 2$, there exist additive complements A, B such that

$$\limsup_{x \to \infty} \frac{A(x)B(x)}{x} = \frac{2a+2}{a+2},$$

but there exist infinitely positive integers x such that A(x)B(x) - x = 1.

Let C_a be the supremum of real numbers δ such that, for any additive complements A, B, if

$$\limsup_{x \to \infty} \frac{A(x)B(x)}{x} < \delta,$$

then (1.1) must hold. By Theorems A and B, we have $5/4 \leqslant C_a \leqslant 3/2$ (taking a = 2 in Theorem B).

In this paper, we improve the lower bound of C_a from 5/4 to $3 - \sqrt{3}$. That is, the following result is proved.

Theorem 1.1. For additive complements A, B, if

$$\limsup_{x \to \infty} \frac{A(x)B(x)}{x} < 3 - \sqrt{3},$$

then $A(x)B(x) - x \to +\infty$ as $x \to +\infty$.

Download English Version:

https://daneshyari.com/en/article/4593945

Download Persian Version:

https://daneshyari.com/article/4593945

Daneshyari.com