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Text. Two infinite sequences A and B of non-negative
integers are called additive complements, if their sum contains
all sufficiently large integers. Let A(x) and B(x) be the
counting functions of A and B. In 1994, Sárközy and
Szemerédi proved that, for additive complements A and B, if
lim supA(x)B(x)/x � 1, then A(x)B(x) − x → +∞ as x →
+∞. In 2010, the authors generalized this result and proved
that if lim supA(x)B(x)/x < 5/4 or lim supA(x)B(x)/x > 2,
then A(x)B(x) − x → +∞ as x → +∞. In 2011, the authors
pointed out that the constant 2 cannot be improved. In this
paper, we improve 5/4 to 3 −

√
3.

Video. For a video summary of this paper, please click here
or visit http://youtu.be/fSTUWhPJdtw.
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1. Introduction

Two infinite sequences A and B of non-negative integers are called additive comple-
ments, if their sum contains all sufficiently large integers. Let A(x) and B(x) be the
counting functions of A and B. For the construction of additive complements A and B

with A(x)B(x) ∼ x, one may refer to [13].
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Starting out from a problem of Hanani and Erdős [4,5], in 1964, Danzer [3] conjectured
that, for additive complements A and B, if

lim sup
x→∞

A(x)B(x)
x

� 1,

then

A(x)B(x) − x → +∞ as x → +∞. (1.1)

(See also [6], [9, p. 75] and [11].) In [14], Sárközy and Szemerédi proved this conjecture.
In 2010, the authors [7] generalized this result and proved the following result.

Theorem A. For additive complements A, B, if

lim sup
x→∞

A(x)B(x)
x

> 2 or lim sup
x→∞

A(x)B(x)
x

<
5
4 ,

then (1.1) must hold.

In 2011, the authors pointed out that the constant 2 in above Theorem A cannot be
improved. In fact, the following result is proved in [1].

Theorem B. For any integer a with a � 2, there exist additive complements A, B such
that

lim sup
x→∞

A(x)B(x)
x

= 2a + 2
a + 2 ,

but there exist infinitely positive integers x such that A(x)B(x) − x = 1.

Let Ca be the supremum of real numbers δ such that, for any additive complements
A, B, if

lim sup
x→∞

A(x)B(x)
x

< δ,

then (1.1) must hold. By Theorems A and B, we have 5/4 � Ca � 3/2 (taking a = 2 in
Theorem B).

In this paper, we improve the lower bound of Ca from 5/4 to 3 −
√

3. That is, the
following result is proved.

Theorem 1.1. For additive complements A, B, if

lim sup
x→∞

A(x)B(x)
x

< 3 −
√

3,

then A(x)B(x) − x → +∞ as x → +∞.
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