

Contents lists available at ScienceDirect

Journal of Number Theory

New congruences modulo powers of 2 for broken 3-diamond partitions and 7-core partitions

Ernest X.W. Xia

Department of Mathematics, Jiangsu University, Jiangsu, Zhenjiang 212013, PR China

ARTICLE INFO

Article history:
Received 26 July 2013
Received in revised form 12 January 2014
Accepted 12 January 2014
Available online 12 March 2014
Communicated by David Goss

MSC: 11P83 05A17

Keywords: Broken k-diamond partition Congruence t-Core partition

ABSTRACT

Let $\Delta_k(n)$ denote the number of broken k-diamond partitions of n for a fixed positive integer k. Recently, Radu and Sellers conjectured that for all $\alpha\geqslant 1$ and $n\geqslant 0$, $\Delta_3(\lambda_\alpha)\Delta_3(2^{\alpha+2}n+\lambda_{\alpha+2})\equiv \Delta_3(\lambda_{\alpha+2})\Delta_3(2^{\alpha}n+\lambda_\alpha)\pmod{2^{\alpha}}$, where $\lambda_\alpha=\frac{2^{\alpha+1}+1}{3}$ if α is even and $\lambda_\alpha=\frac{2^{\alpha}+1}{3}$ if α is odd. Radu and Sellers proved that this conjecture is true for $\alpha=1$. In this work, we show that this conjecture holds for $\alpha=2$. We also prove that $\Delta_3(\lambda_\alpha)\equiv (-1)^{\left[\frac{\alpha}{2}\right]}\pmod{4}$ which yields $\Delta_3(\lambda_\alpha)\equiv 1\pmod{2}$. This congruence was conjectured by Radu and Sellers. Furthermore, we also deduce some new Ramanujantype congruences modulo 2 and 4 for 7-core partitions.

© 2014 Elsevier Inc. All rights reserved.

1. Introduction

The aim of this paper is to derive some congruences modulo powers of 2 for the number of broken 3-diamond partitions and the number of 7-cores. We give a proof of part of a conjecture given by Radu and Sellers. We also generalize some parity results for the number of broken 3-diamond partitions proved by Radu and Sellers and establish some new congruences for the number of 7-cores.

E-mail address: ernestxwxia@163.com.

Let us begin with some notation and terminology on q-series and partitions. Throughout this paper, let |q| < 1. We use the standard notation

$$(a;q)_{\infty} = \prod_{k=0}^{\infty} \left(1 - aq^k\right) \tag{1.1}$$

and often write

$$(a_1, a_2, \dots, a_n; q)_{\infty} = (a_1; q)_{\infty} (a_2; q)_{\infty} \cdots (a_n; q)_{\infty}.$$
 (1.2)

Recall that the Ramanujan theta function f(a,b) is defined by

$$f(a,b) = \sum_{n=-\infty}^{\infty} a^{n(n+1)/2} b^{n(n-1)/2},$$
(1.3)

where |ab| < 1. The Jacobi triple product identity can be restated as

$$f(a,b) = (-a, -b, ab; ab)_{\infty}.$$
 (1.4)

Three special cases of (1.3) are defined by

$$\phi(q) = f(q, q) = \sum_{n = -\infty}^{\infty} q^{n^2},$$
(1.5)

$$\psi(q) = f(q, q^3) = \sum_{n=0}^{\infty} q^{\frac{n(n+1)}{2}}$$
(1.6)

and

$$f(-q) = f(-q, -q^2) = \sum_{n=-\infty}^{\infty} (-1)^n q^{n(3n-1)/2} = (q; q)_{\infty}.$$
 (1.7)

In this paper, for any positive integer n, we use f_n to denote $f(-q^n)$, that is,

$$f_n = (q^n; q^n)_{\infty} = \prod_{k=1}^{\infty} (1 - q^{nk}).$$
 (1.8)

By (1.3), (1.4), (1.5) and (1.6), we have

$$\phi(q) = \frac{f_2^5}{f_1^2 f_4^2}, \qquad \psi(q) = \frac{f_2^2}{f_1}. \tag{1.9}$$

A combinatorial study guided by MacMahon's Partition Analysis led Andrews and Paule [1] to the construction of a new class of directed graphs called broken k-diamond

Download English Version:

https://daneshyari.com/en/article/4593948

Download Persian Version:

https://daneshyari.com/article/4593948

Daneshyari.com