

Contents lists available at SciVerse ScienceDirect

Journal of Number Theory

www.elsevier.com/locate/jnt

Bounding the degree of Belyi polynomials

Jose Rodriguez

Department of Mathematics, University of Berkeley, 743 Evans Hall, Berkeley, CA, United States

ARTICLE INFO

Article history: Received 13 April 2011 Revised 20 July 2012 Accepted 10 December 2012 Available online 24 April 2013 Communicated by David Goss

Keywords: Belyi Dessin d'enfant Newton polygon *p*-Adics Height functions Heights Belyi height Belyi functions

ABSTRACT

Text. Belyi's theorem states that a Riemann surface *X*, as an algebraic curve, is defined over $\overline{\mathbb{Q}}$ if and only if there exists a holomorphic function *B* taking *X* to $P^1\mathbb{C}$ with at most three critical values $\{0, 1, \infty\}$. By restricting to the case where $X = P^1\mathbb{C}$ and our holomorphic functions are Belyi polynomials, for an algebraic number λ , we define a Belyi height $\mathcal{H}(\lambda)$ to be the minimal degree of the set of Belyi polynomials with $B(\lambda) \in \{0, 1\}$. We prove for non-zero λ with non-zero *p*-adic valuation, the Belyi height of λ is greater than or equal to *p* using the combinatorics of Newton polygons. We also give examples of algebraic numbers with relatively low height and show that our bounds are sharp.

Video. For a video summary of this paper, please click here or visit http://www.youtube.com/watch?v=MJAodACJ4kM.

© 2013 Elsevier Inc. All rights reserved.

1. Introduction

In this paper, we fix an algebraic closure of *p*-adic numbers and denote it as $\overline{\mathbb{Q}}_p$. We denote an embedded algebraic closure of the rational numbers in $\overline{\mathbb{Q}}_p$ as $\overline{\mathbb{Q}}$. A polynomial B(x) in $\overline{\mathbb{Q}}[x]$ is said to have a critical point at x_i if its derivative B'(x) vanishes at x_i . We say B(x) has a critical value of $B(x_i)$ when x_i is a critical point. A polynomial is said to be a *general Belyi polynomial* if its critical values are contained in $\{0, 1\}$. Since composing a general Belyi polynomial with any linear factor $(\gamma x - \alpha)$ yields another general Belyi polynomial, we normalize our set of polynomials by requiring $B(0), B(1) \in \{0, 1\}$.

Definition 1. A polynomial $B(x) \in \overline{\mathbb{Q}}[x]$ is said to be a *normalized Belyi polynomial* or *Belyi polynomial* if $B(0), B(1) \in \{0, 1\}$ and $\{B(x_i): B'(x_i) = 0\} \subset \{0, 1\}$.

0022-314X/\$ – see front matter @ 2013 Elsevier Inc. All rights reserved. http://dx.doi.org/10.1016/j.jnt.2012.12.019

E-mail address: jo.ro@berkeley.edu.

Equivalently, we note that B(x) is a Belyi polynomial if

(i) $B(0), B(1) \in \{0, 1\}$, and

(ii) B'(x) | B(x)(1 - B(x)).

We call these the two Belyi conditions. With these conditions, a Belyi polynomial composed with a linear factor $(\gamma x - \alpha)$ is a Belyi polynomial if and only if $B(\gamma)$, $B(\gamma - \alpha) \in \{0, 1\}$. For a fixed Belyi polynomial there exist finitely many linear factors we may compose with to yield a Belyi polynomial. This finiteness condition is essential to define a Belyi height with the property that there exist finitely many Belyi polynomials of a given height.

Example 1. The simplest examples of Belyi polynomials are $f(x) = x^n$, f(x) = 1 - x, and

$$B_{a,b}(x) = b^b a^{-a} (b-a)^{-(b-a)} x^a (1-x)^{b-a},$$

with *a* and (b - a) as positive integers.

The Belyi polynomial $B_{a,b}(x)$ maps $\{\frac{a}{b}, 0, 1\}$ to $\{0, 1\}$. When we compose $B_{a,b}(x)$ with certain polynomials C(x) the result, $B_{a,b}(C(x))$, has fewer critical values than C(x). Specifically, when C(x) satisfies the first Belyi condition and has a critical value of $\frac{a}{b}$, composing with $B_{a,b}$ reduces the number of critical values.

Example 2. The Chebyshev polynomials of the first kind, defined as

$$T_0(x) = 1$$
, $T_1(x) = x$, $T_{n+1}(x) = 2x \cdot T_n(x) - T_{n-1}(x)$

for $n \ge 1$ have critical values contained in $\{-1, 1\}$ and $T_n(1), T_n(-1) \in \{-1, 1\}$. Therefore $\frac{1}{2}(T_n(x) + 1)$ are general Belyi polynomials and $\frac{1}{2}(T_n(2x - 1) + 1)$ are Belyi polynomials.

This example is studied in detail in [1] where the normalization of Belyi polynomials is done with respect to $\{-1, 1\}$ instead of $\{0, 1\}$.

Example 3. The composition of any two Belyi polynomials is a Belyi polynomial.

This example is a simple application of the chain rule and gives the set of Belyi polynomials a monoid structure under composition with identity of x. This structure has been used to study absolute Galois groups in number theory [12,4] and dynamical systems [9].

Belyi polynomials belong to the larger set of Belyi functions. A Belyi function f maps a Riemann surface X to the Riemann sphere $P^1\mathbb{C}$ with critical values contained in $\{0, 1, \infty\}$. Grothendieck was drawn into this subject because of Belyi's theorem [3], which states a Riemann surface X is defined over $\overline{\mathbb{Q}}$ if and only if there exists a Belyi function mapping X to $P^1\mathbb{C}$. This marked the beginning of his program on dessins d'enfants [10], which is directly related to Belyi functions due to the well-known categorical equivalence between the two.

In the case when $X = P^1\mathbb{C}$ we normalize Belyi functions by requiring the set $\{0, 1, \infty\}$ be mapped to $\{0, 1, \infty\}$. As a corollary [1] of the Riemann Existence Theorem [8] there exist finitely many normalized Belyi functions that map $P^1\mathbb{C}$ to $P^1\mathbb{C}$ of degree at most n, where *degree* is the cardinality of the pre-image of a point in $P^1\mathbb{C} \setminus \{0, 1, \infty\}$. This means there are finitely many normalized Belyi polynomials of a given degree, hence finitely many algebraic numbers mapped to zero or one by normalized Belyi polynomials of degree d. The question we address in this paper is the following: for fixed $\lambda \in \overline{\mathbb{Q}}$, what is the minimal degree of normalized Belyi polynomials that map λ to zero or one? We call this minimum the *Belyi height* of a number and denote it as $\mathcal{H}(\lambda)$. In [7], an upper bound of $\mathcal{H}(\lambda)$ is given, in addition to bounds for the case when X is an elliptic curve. In this paper, we provide Download English Version:

https://daneshyari.com/en/article/4593994

Download Persian Version:

https://daneshyari.com/article/4593994

Daneshyari.com