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We also prove that if p =2 (mod 3) then
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In addition, we propose several related conjectures for further
research.
© 2013 Elsevier Inc. All rights reserved.

1. Introduction

Let p=1 (mod 4) be a prime and write p = x> + y? with x=1 (mod 4) and y =0 (mod 2).
A famous result of Gauss (cf. B.C. Berndt, RJ. Evans and K.S. Williams [BEW, (9.0.1)]) states
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(- ])/4> =2x (mod p),
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which was refined by S. Chowla, B. Dwork and R.J. Evans [CDE] as follows:
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<<p 1>/2) _27 41 (zx _ ﬁ) (mod p?).
(p—1)/4 2 2

In 2010 ].B. Cosgrave and K. Dilcher [CD] even determined (Egj;ﬁ) mod p>. The author [Sulla,
Conjecture 5.5] conjectured that
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(where (;) denotes the Legendre symbol), and this was confirmed by the author’s twin brother Z.-H.
Sun [S] with the help of Legendre polynomials. Furthermore, the author [Sul2] proved that
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When p =3 (mod 4) is a prime, the author [Su13b] showed that
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Forne N={0,1,2,...}, we have the combinatorial identities

é(;:)z:(znn) and ;Xn:o(_”k<2k) =(- 1)"( ><3n”)

(see, e.g., [G, (3.66) and (6.6)]). Note that ZZ:O(—l)k(Z)3 =0forn=1,3,5,.... A conjecture of the
author [Sul1b, Conjecture 5.13] states that if p > 3 is a prime then

_ _ 2(p—1)/3 : —
’”Z] 0 _ (3 ) "Z] 9@y _ [ CE5) moedpt ifp=1@mod3),
24k pard (—216) p/(z((;’fll))/?) (mod p?) if p=2 (mod 3).

It is known that for any prime p =1 (mod 3) we can write 4p = u? 4+ 27v2 with u,v € Z and
u=1 (mod 3), and we have

2p—1)/3\_p )
((p—1>/3>_ﬂ_” (mod p7)

(cf. [CD, Theorem 6]).

In [Sul3a] the author introduced the polynomials S, (x) = Zk ( )4 k(n=0,1,2,...) and posed
13 related conjectures one of which states that for any prime p > 2 we have

4x% —2p (mod p?) if p=1 (mod 12) and p = x% + y? 31x),
ZS (12) = { (¥)4xy (mod p?) if p=5(mod 12) and p=x*>+ y? (x, y € Z),
0 (mod p?) if p=3 (mod 4).
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