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1. Introduction

The notion of additive bases occupies a central position in Combinatorial Number Theory. In an
additive semigroup G, a basis means a subset A of G such that there exists an integer h, depending
only on A, for which any element of x € G can be written as a sum of h (or at most h) members
of A. The idea has been widely investigated in different structures in which a number of results have
been shown. One can quote the celebrated Lagrange theorem in the set of nonnegative integers but
also such results in o -finite abelian groups [HR].

In an additive structure we will use the notation A+ B ={a + b: a € A, b € B}, its extension
hA=A+A+---+A (h times) and also their counterparts A - B, A" in a multiplicative structure. In a
group we also denote —A (resp. A~!) for the set of the inverses of elements of A. With this notation,
A is a basis in G whenever for some integer h one has hA = G or A" = G according to the underlying
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structure. One also defines the notion of doubling constant (resp. squaring constant) of a finite set A
that is |[A + A|/|A] (resp. |A - A|/|A]).

Another aspect concerns inverse results in number theory in which the Freiman theorem has a
central place. It asserts that a finite set A with a small doubling constant in an abelian (additive)
group G has a sharp structure, namely it is included, as a rather dense subset, in a (generalized)
arithmetic progression of cosets of some subgroup of G (cf. [GR]). An important tool for the proof,
known as the Bogolyubov-Ruzsa Lemma, is the fact that 2A — 2A contains a dense substructure.

According to the preceding discussion, one may consider the general problem of investigating in
which conditions on a finite A, the sumset A + A (or the product set A - A) contains a rich substruc-
ture. In this paper we will focus on Heisenberg groups which give an interesting counterpoint to the
commutative case.

Let p be a prime number and F the field with p elements. We denote by H, the (2n +
1)-dimensional Heisenberg linear group over F formed with the upper triangular square matrices
of size n + 2 of the following kind

1 x z
xy.21=0 In 'y,
00 1

where X = (x1,X2,...,%n), Y = (¥1,¥2,---, ¥n), Xi, ¥i,Z€F, i=1,2,...,n, and I, is the n x n identity
matrix. We have |H,| = p?"*! and we recall the product rule in Hy:

/

Xy 20Xy, 2] =[x+X, y + ¥, (x y)+z+7],

where (-,-) is the inner product, that is (x, y) = > 1_; x;yi.

So this set of (n+2) x (n+2) matrices form a group whose unit is e = [0, 0, 0]. As group-theoretical
properties of Hy, we recall that H, is non-abelian and two-step nilpotent, that is the double commu-
tator satisfies aba—'b~!chab—la"lc~! =e for any a, b, c € Hy, where the commutator of a and b is
defined as aba= b1,

The Heisenberg group possesses an interesting structure in which we can prove that in general
there is no good model for a subset A with a small squaring constant |A - A|/|A| (see [G,HH] for more
details), unlike for subsets of abelian groups. We should add that the situation is less unusual if we
assume that A has a small cubing constant |A- A - A|/|A| (see [T2]).

We now quote the following well-known results.

Lemma 1.1. Let X and Y be subsets of a finite (multiplicative) group G. If | X| + |Y| > |G| then G =X - Y.

The proof follows from the simplest case of the sieve formula:

XN (- Y Y =X+ ]x}- Y = [ XU ({x}- Y1) > IX|+ Y] = |G| > 0.
Lemma 1.2. Let X and Y be subsets of F. If X + Y #F then | X + Y| > |X| +|Y|— 1.

This general lower bound for the cardinality of sumsets in F is known as the Cauchy-Davenport
Theorem (see e.g. [TV]).

We deduce from Lemma 1.1 that a sufficient condition ensuring that a subset A C H, is a basis
is |A| > |Hp|/2. Moreover this condition is sharp if p =2 since in that case H, has a subgroup of
index 2. For p > 2, any subset of H, with cardinality bigger than |H,|/p is not contained in a coset
of a proper subgroup of Hj,, hence it is a basis for some order h bounded by a function depending
only on p: indeed by a theorem of Freiman in arbitrary finite groups (see [T, paragraph 4.9]), it is
known that if A is not included in some coset of some proper subgroup of H, then |A - A| > 3|A|/2.
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