

Contents lists available at SciVerse ScienceDirect

Journal of Number Theory

A structure result for bricks in Heisenberg groups

Norbert Hegyvári ^{a,*}, François Hennecart ^b

ARTICLE INFO

Article history: Received 14 February 2013 Revised 18 March 2013 Accepted 18 March 2013 Available online 13 May 2013 Communicated by David Goss

MSC: primary 11B75 secondary 05D10

Keywords: Bases Heisenberg groups

ABSTRACT

We show that for a sufficiently big *brick* B of the (2n+1)-dimensional Heisenberg group H_n over the finite field \mathbb{F}_p , the product set $B \cdot B$ contains at least |B|/p many cosets of some non-trivial subgroup of H_n .

© 2013 Elsevier Inc. All rights reserved.

1. Introduction

The notion of additive bases occupies a central position in Combinatorial Number Theory. In an additive semigroup G, a basis means a subset A of G such that there exists an integer h, depending only on A, for which any element of $x \in G$ can be written as a sum of h (or at most h) members of A. The idea has been widely investigated in different structures in which a number of results have been shown. One can quote the celebrated Lagrange theorem in the set of nonnegative integers but also such results in σ -finite abelian groups [HR].

In an additive structure we will use the notation $A + B = \{a + b : a \in A, b \in B\}$, its extension $hA = A + A + \dots + A$ (h times) and also their counterparts $A \cdot B$, A^h in a multiplicative structure. In a group we also denote -A (resp. A^{-1}) for the set of the inverses of elements of A. With this notation, A is a basis in G whenever for some integer h one has hA = G or $A^h = G$ according to the underlying

E-mail addresses: hegyvari@elte.hu (N. Hegyvári), francois.hennecart@univ-st-etienne.fr (F. Hennecart).

^a ELTE TTK, Eötvös University, Institute of Mathematics, H-1117 Pázmány st. 1/c, Budapest, Hungary

^b Université Jean-Monnet, Institut Camille Jordan, 23, rue du Docteur Paul Michelon, 42023 Saint-Étienne Cedex 02, France

^{*} Corresponding author.

structure. One also defines the notion of *doubling constant* (resp. *squaring constant*) of a finite set *A* that is |A + A|/|A| (resp. $|A \cdot A|/|A|$).

Another aspect concerns inverse results in number theory in which the Freiman theorem has a central place. It asserts that a finite set A with a small doubling constant in an abelian (additive) group G has a sharp structure, namely it is included, as a rather dense subset, in a (generalized) arithmetic progression of cosets of some subgroup of G (cf. [GR]). An important tool for the proof, known as the Bogolyubov–Ruzsa Lemma, is the fact that 2A - 2A contains a dense substructure.

According to the preceding discussion, one may consider the general problem of investigating in which conditions on a finite A, the sumset A + A (or the product set $A \cdot A$) contains a *rich* substructure. In this paper we will focus on Heisenberg groups which give an interesting counterpoint to the commutative case.

Let p be a prime number and \mathbb{F} the field with p elements. We denote by H_n the (2n+1)-dimensional Heisenberg linear group over \mathbb{F} formed with the upper triangular square matrices of size n+2 of the following kind

$$[\underline{x}, \underline{y}, z] = \begin{pmatrix} 1 & \underline{x} & z \\ 0 & I_n & {}^t\underline{y} \\ 0 & 0 & 1 \end{pmatrix},$$

where $\underline{x} = (x_1, x_2, \dots, x_n)$, $\underline{y} = (y_1, y_2, \dots, y_n)$, $x_i, y_i, z \in \mathbb{F}$, $i = 1, 2, \dots, n$, and I_n is the $n \times n$ identity matrix. We have $|H_n| = p^{2n+1}$ and we recall the product rule in H_n :

$$[\underline{x}, y, z][\underline{x'}, y', z'] = [\underline{x} + \underline{x'}, y + y', \langle \underline{x}, y' \rangle + z + z'],$$

where $\langle \cdot, \cdot \rangle$ is the inner product, that is $\langle \underline{x}, y \rangle = \sum_{i=1}^{n} x_i y_i$.

So this set of $(n+2) \times (n+2)$ matrices form a group whose unit is $e = [\underline{0}, \underline{0}, 0]$. As group-theoretical properties of H_n , we recall that H_n is non-abelian and two-step nilpotent, that is the double commutator satisfies $aba^{-1}b^{-1}cbab^{-1}a^{-1}c^{-1} = e$ for any $a, b, c \in H_n$, where the commutator of a and b is defined as $aba^{-1}b^{-1}$.

The Heisenberg group possesses an interesting structure in which we can prove that in general there is no *good model* for a subset A with a small *squaring constant* $|A \cdot A|/|A|$ (see [G,HH] for more details), unlike for subsets of abelian groups. We should add that the situation is less unusual if we assume that A has a small *cubing constant* $|A \cdot A \cdot A|/|A|$ (see [T2]).

We now quote the following well-known results.

Lemma 1.1. Let X and Y be subsets of a finite (multiplicative) group G. If |X| + |Y| > |G| then $G = X \cdot Y$.

The proof follows from the simplest case of the sieve formula:

$$\left|X\cap\left(\left\{x\right\}\cdot Y^{-1}\right)\right|=\left|X\right|+\left|\left\{x\right\}\cdot Y^{-1}\right|-\left|X\cup\left(\left\{x\right\}\cdot Y^{-1}\right)\right|\geqslant\left|X\right|+\left|Y\right|-\left|G\right|>0.$$

Lemma 1.2. Let X and Y be subsets of \mathbb{F} . If $X + Y \neq \mathbb{F}$ then $|X + Y| \ge |X| + |Y| - 1$.

This general lower bound for the cardinality of sumsets in \mathbb{F} is known as the Cauchy–Davenport Theorem (see e.g. [TV]).

We deduce from Lemma 1.1 that a sufficient condition ensuring that a subset $A \subseteq H_n$ is a basis is $|A| > |H_n|/2$. Moreover this condition is sharp if p = 2 since in that case H_n has a subgroup of index 2. For p > 2, any subset of H_n with cardinality bigger than $|H_n|/p$ is not contained in a coset of a proper subgroup of H_n , hence it is a basis for some order h bounded by a function depending only on p: indeed by a theorem of Freiman in arbitrary finite groups (see [T, paragraph 4.9]), it is known that if A is not included in some coset of some proper subgroup of H_n then $|A \cdot A| \ge 3|A|/2$.

Download English Version:

https://daneshyari.com/en/article/4594001

Download Persian Version:

https://daneshyari.com/article/4594001

<u>Daneshyari.com</u>