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We study representation of square-free polynomials in the
polynomial ring Fq[t] over a finite field Fq by polynomials
in Fq[t][x]. This is a function field version of the well-
studied problem of representing square-free integers by
integer polynomials, where it is conjectured that a separable
polynomial f ∈ Z[x] takes infinitely many square-free values,
barring some simple exceptional cases, in fact that the integers
a for which f(a) is square-free have a positive density. We
show that if f(x) ∈ Fq[t][x] is separable, with square-free
content, of bounded degree and height, and n is fixed, then
as q → ∞, for almost all monic polynomials a(t) of degree n,
the polynomial f(a) is square-free.

© 2013 Elsevier Inc. All rights reserved.

1. Introduction

Let Fq be a finite field of q elements. We wish to study representation of square-free
polynomials in the polynomial ring Fq[t] by polynomials in Fq[t][x]. This is a function
field version of the well-studied problem of representing square-free integers by inte-
ger polynomials, where it is conjectured that a separable polynomial (that is, without
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repeated roots) f ∈ Z[x] takes infinitely many square-free values, barring some simple
exceptional cases, in fact that the integers a for which f(a) is square-free have a pos-
itive density. The problem is most difficult when f is irreducible. The quadratic case
was solved by Ricci [13]. For cubics, Erdös [2] showed that there are infinitely many
square-free values, and Hooley [6] gave the result about positive density. Beyond that
nothing seems known unconditionally for irreducible f , for instance it is still not known
that a4 + 2 is infinitely often square-free. Granville [3] showed that the ABC conjecture
completely settles this problem. An easier problem which has recently been solved is to
ask how often an irreducible polynomial f ∈ Z[x] of degree d attains values which are free
of (d− 1)-th powers, either when evaluated at integers or at primes, see [2,7–9,5,1,4,12].

In this note we study a function field version of this problem. Given a polynomial
f(x) =

∑
j γj(t)xj ∈ Fq[t][x] which is separable, that is with no repeated roots in any

extension of Fq(t), we want to know how often is f(a) square-free in Fq[t] as a runs over
(monic) polynomials in Fq[t].

We want to rule out polynomials like f(x, t) = t2x for which f(a(t), t) can never
be square-free. To do so, recall that the content c ∈ Fq[t] of a polynomial f ∈
Fq[t][x] as above is defined as the greatest common divisor of the coefficients of f :
c = gcd(γ0, . . . , γ�). A polynomial is primitive if c = 1, and any f ∈ Fq[t][x] can be
written as f = cf0 where f0 is primitive. If the content c is not square-free then f(a)
can never be square-free.

For any field F, let

Mn(F) =
{
a ∈ F[t]: deg a = n, a monic

}
, (1.1)

so that #Mn(Fq) = qn. Defining

Sf (n)(F) =
{
a ∈ Mn(F): f(a) is square-free

}
, (1.2)

we want to study the frequency

#Sf (n)(Fq)
#Mn(Fq)

(1.3)

in an appropriate limit.
There are two possible limits to take: Large degree (n → ∞) while keeping the constant

field Fq fixed, or large constant field (q → ∞) while keeping n fixed. The large degree
limit (q fixed, n → ∞) was investigated by Ramsay [11] and Poonen [10] who showed1

that for f ∈ Fq[t][x] separable,

#Sf (n)(Fq)
#Mn(Fq)

= cf + Of,q

(
1
n

)
, as n → ∞, (1.4)

1 They actually count all polynomials up to degree n, and do not impose the monic condition.
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