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We first prove that if a has a prime factor not dividing b then
there are infinitely many positive integers n such that

(
an+bn

an

)
is not divisible by bn + 1. This confirms a recent conjecture
of Z.-W. Sun. Moreover, we provide some new divisibility
properties of binomial coefficients: for example, we prove that(
12n
3n

)
and

(
12n
4n

)
are divisible by 6n − 1, and that

(
330n
88n

)
is

divisible by 66n − 1, for all positive integers n. As we show,
the latter results are in fact consequences of divisibility and
positivity results for quotients of q-binomial coefficients by
q-integers, generalising the positivity of q-Catalan numbers.
We also put forward several related conjectures.
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1. Introduction

The study of arithmetic properties of binomial coefficients has a long history. In 1819,
Babbage [6] proved the congruence

(
2p− 1
p− 1

)
≡ 1 (mod p2)

for primes p � 3. In 1862, Wolstenholme [28] showed that the above congruence holds
modulo p3 for any prime p � 5. See [20] for a historical survey on Wolstenholme’s
theorem. Another famous congruence is

(
2n
n

)
≡ 0 (mod n + 1).

The corresponding quotients, the numbers Cn := 1
n+1

(2n
n

)
, are called Catalan numbers,

and they have many interesting combinatorial interpretations; see, for example, [12] and
[24, pp. 219–229]. Recently, Ulas and Schinzel [27] studied divisibility problems of Erdős
and Straus, and of Erdős and Graham. In [25,26], Sun gave some new divisibility prop-
erties of binomial coefficients and their products. For example, Sun proved the following
result.

Theorem 1.1. (See [26, Theorem 1.1].) Let a, b, and n be positive integers. Then

(
an + bn

an

)
≡ 0 mod bn + 1

gcd(a, bn + 1) . (1.1)

Sun also proposed the following conjecture.

Conjecture 1.2. (See [26, Conjecture 1.1].) Let a and b be positive integers. If (bn + 1) |(
an+bn

an

)
for all sufficiently large positive integers n, then each prime factor of a divides b.

In other words, if a has a prime factor not dividing b, then there are infinitely many
positive integers n such that (bn + 1) �

(
an+bn

an

)
.

Inspired by Conjecture 1.2, Sun [26] introduced a new function f :Z+ × Z+ → N.
Namely, for positive integers a and b, if

(
an+bn

an

)
is divisible by bn + 1 for all n ∈ Z+,

then he defined f(a, b) = 0; otherwise, he let f(a, b) be the smallest positive integer n

such that
(
an+bn

an

)
is not divisible by bn+1. Using Mathematica, Sun [26] computed some

values of the function f :

f(7, 36) = 279, f(10, 192) = 362, f(11, 100) = 1187,

f(22, 200) = 6462, . . . .
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