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1. Introduction and notation

Throughout the paper we assume q is a complex number with |q| < 1. We use the
standard notations

(a; q)∞ :=
∞∏

n=0

(
1 − aqn

)
(1.1)

and

E(q) := (q; q)∞. (1.2)

Next, we recall the Ramanujan theta function

f(a, b) :=
∞∑

n=−∞
a

n(n+1)
2 b

n(n−1)
2 , |ab| < 1. (1.3)

The function f(a, b) satisfies the Jacobi triple product identity [3, Entry 19]

f(a, b) = (−a; ab)∞(−b; ab)∞(ab; ab)∞, (1.4)

along with

f(a, b) = a
n(n+1)

2 b
n(n−1)

2 f
(
a(ab)n, b(ab)−n

)
, (1.5)

where n ∈ Z [3, Entry 18]. One may use (1.4) to derive the following special cases:

E(q) = f
(
−q,−q2) =

∞∑
n=−∞

(−1)nq
n(3n−1)

2 , (1.6)

φ(q) := f(q, q) =
∞∑

n=−∞
qn

2
= E5(q2)

E2(q4)E2(q) , (1.7)

ψ(q) := f
(
q, q3) =

∞∑
n=−∞

q2n2−n = E2(q2)
E(q) , (1.8)

f
(
q, q2) = E2(q3)E(q2)

E(q6)E(q) , (1.9)

f
(
q, q5) = E(q12)E2(q2)E(q3)

E(q6)E(q4)E(q) . (1.10)

Note that (1.6) is the famous Euler pentagonal number theorem. Splitting (1.6) ac-
cording to the parity of the index of summation, we find

E(q) =
∞∑

n=−∞
q6n2−n − q

∞∑
n=−∞

q6n2+5n = f
(
q5, q7)− qf

(
q, q11). (1.11)
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