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1. Introduction and notation

Throughout the paper we assume ¢ is a complex number with |¢| < 1. We use the
standard notations

(@)oo == [ (1 = aq™) (L.1)
n=0
and
E(q) = (¢;9) - (1.2)

Next, we recall the Ramanujan theta function

> (n+1) | n(n—1)
Z a” 2 bz , Jabl < 1. (1.3)
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The function f(a,b) satisfies the Jacobi triple product identity [3, Entry 19]

f(aab) = (7(1;0,())00(71); ab)oo(ab; ab)ooa (14)
along with
Fla,b) = a™ 6™ f(a(ab)™, b(ab) ™), (1.5)
where n € Z [3, Entry 18]. One may use (1.4) to derive the following special cases:
Blo) = f(-a.-¢’) = > ()", (L6)
_ B¢
¢(q) = n;)oq = BB Q) (1.7)
_ 2n?—n _ Ez(qQ)
¥(@) = f(g,4°) n_z_:ooq = B (1.8)
2y _ B2(d*)E(®)
fla,q°) = B () (1.9)
flad) = E(¢"*)E*(¢*)E(q”) (1.10)

E(¢°)E(q")E(q)
Note that (1.6) is the famous Euler pentagonal number theorem. Splitting (1.6) ac-

cording to the parity of the index of summation, we find

oo o0

ST g ST ¢ = 1 (P q7) — af (g.4M). (1.11)
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