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Text. In a previous paper the graphs associated with the itera-
tions of the map ϑ which takes an element x of a finite field
of characteristic two to x + x−1 were studied, exploiting the re-
lation between ϑ and the duplication map over Koblitz curves.
While in odd characteristic the graphs associated with ϑ seem not
to present notable symmetries, these are present in characteristic
three and five. In fact, while in characteristic three the map ϑ is
conjugated to the inverse of the square mapping, in characteristic
five it is related to an endomorphism of a certain elliptic curve.
Relying on these considerations we describe the structure of the
graphs in finite fields of characteristic three and five and present a
computational procedure for constructing examples in any charac-
teristic.

Video. For a video summary of this paper, please click here or
visit http://www.youtube.com/watch?v=nnH53jawJaQ.
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1. Introduction

Over the last years some studies about iterations of maps over finite fields appeared. For exam-
ple, in [Rog96] the author concentrates on the square mapping over prime fields, while in [VS04]
the authors deal with other quadratic maps and in [CS04] the authors study the cyclic structure of
repeated exponentiation modulo a prime. The map which takes an element x of a finite field to
x + x−1, studied in this paper, is of interest too. For example, it is involved in the construction of
self-reciprocal polynomials via the so-called Q -transform (cf. [Mey90]). Moreover, the relations be-
tween the multiplicative order of an element γ and γ + γ −1 over finite fields have been studied too
(cf. [Shp01]).
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While this paper focuses on finite fields of characteristic three and five, summarizing the results
proved in characteristic two, the problem can be described over a finite field of arbitrary characteristic.
If Fq is a finite field with q elements for some prime power q, then we can define a map ϑ on
P1(Fq) = Fq ∪ {∞} in such a way:

ϑ(x) =
{

x + x−1 if x �= 0 and x �= ∞,

∞ if x = 0 or ∞.

We associate a graph with the map ϑ over P1(Fq), labeling the vertices of the graph by the ele-
ments of P1(Fq) and connecting a vertex α with a vertex β if ϑ(α) = β . We notice in passing that, if
β ∈ P1(Fq), then ϑ(x) = β for at most two elements x ∈ P1(Fq).

An element γ ∈ P1(Fq) can be periodic or not with respect to the action of the map ϑ . Never-
theless, even when γ is not periodic, it is preperiodic, namely there exists a certain iterate of γ , say
ϑk(γ ), which is periodic. Consider now an element γ which is periodic. In this case, ϑk(γ ) = γ , for
some positive integer k, namely γ belongs to a cycle of length k or a divisor of k. The smallest among
these integers k is the period l of γ with respect to the map ϑ and the set {ϑ i(γ ): 0 � i < l} is
the cycle of length l containing γ . An element γ belonging to a cycle can be the root of a reversed
directed binary tree, provided that γ = ϑ(α), for some α which is not contained in any cycle.

While it is possible to construct the graph associated with ϑ over any finite field, the experimental
evidence suggests that such graphs in general present no particular symmetries. For example, the
trees rooted at the elements of a same cycle do not have the same depth. Notwithstanding, in finite
fields of characteristic two, three and five the graphs present remarkable symmetries and a complete
description is possible.

1.1. Characteristic two

In [Ugo12] we dealt with the graphs associated with the map ϑ in characteristic two. There we no-
ticed that this map is related to the duplication map over Koblitz curves. For the reader’s convenience
we present here an example taken from [Ugo12].

Example 1.1. In this example we construct the graph associated with the map ϑ in the field F25 ,
viewed as the splitting field over F2 of the polynomial x5 + x2 + 1 ∈ F2[x]. If α is a root of such a
polynomial in F25 , then P1(F25 ) = {0} ∪ {αi: 1 � i � 31} ∪ {∞}. We will label the nodes denoting the
elements αi by the exponent i and the zero element by ‘0’.

1

8

216

4

23

29

1527

30

9

10

21

13

1811

20

26

5

22

3

12

176

24

19

14

257

28
31

‘0’

∞

While the length of the cycles in finite fields of characteristic two depends on the multiplicative
order of a certain endomorphism in the endomorphism ring of the Koblitz curve defined by the
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