

Contents lists available at SciVerse ScienceDirect

Journal of Number Theory

NUMBER THEORY

www.elsevier.com/locate/jnt

Explicit upper bounds for the Stieltjes constants

Sumaia Saad Eddin

Laboratoire Paul Painlevé, Université des Sciences et Technologies de Lille, Bâtiment M2, Cité Scientifique, 59655 Villeneuve d'ascq Cedex, France

ARTICLE INFO

Article history: Received 13 June 2011 Revised 8 September 2012 Accepted 10 September 2012 Available online 26 October 2012 Communicated by David Goss

Keywords: Stieltjes coefficients Dirichlet characters L-functions Gauss sums Functional equation Matsuoka's formula

ABSTRACT

Text. Let χ be a primitive Dirichlet character modulo q and let $(-1)^n \gamma_n(\chi)/n!$ (for n larger than 0) be the n-th Laurent coefficient around z = 1 of the associated Dirichlet L-series. When χ is non-principal, $(-1)^n \gamma_n(\chi)$ is simply the value of the n-th derivative of $L(z, \chi)$ at z = 1. In this paper we give an explicit upper bounds for $|\gamma_n(\chi)|$ for $q \leq \frac{\pi}{2} \frac{e^{(n+1)/2}}{n+1}$. In particular, when q = 1 the explicit upper bound we get improves on earlier work. We conclude this paper by showing that we can altogether dispense in these proofs with the functional equation of $L(z, \chi)$.

Video. For a video summary of this paper, please click here or visit http://www.youtube.com/watch?v=q340UciEvAA.

© 2012 Elsevier Inc. All rights reserved.

1. Introduction and results

Let χ be a Dirichlet character modulo q and let us denote by $\gamma_n(\chi)$ (for n larger than 0) the n-th Laurent coefficient around z = 1 of the Dirichlet *L*-function $L(z, \chi)$. We quote the following relation from [9],

$$\gamma_n(\chi) = \sum_{a=1}^q \chi(a) \gamma_n(a,q), \tag{1}$$

with

$$\gamma_n(a,q) = \lim_{T \to \infty} \left\{ \sum_{1 \le m \equiv a \mod q}^T \frac{(\log m)^n}{m} - \frac{(\log T)^{n+1}}{q(n+1)} \right\}.$$
 (2)

E-mail address: sumaia.saad-eddin@math.univ-lille1.fr.

⁰⁰²²⁻³¹⁴X/\$ – see front matter © 2012 Elsevier Inc. All rights reserved. http://dx.doi.org/10.1016/j.jnt.2012.09.001

In particular, $\gamma_0(1, 1)$ is the well-known Euler constant. The constants $\gamma_n(a, q)$ are known as the Stieltjes or the generalized Euler constants. We use the shorter form $\gamma_n(1, 1) = \gamma_n$ (this is also $\gamma_n(\chi_0)$ where χ_0 is the only character modulo 1), so that we have

$$\zeta(z) = \frac{1}{z-1} + \sum_{n=0}^{\infty} (-1)^n \frac{\gamma_n}{n!} (z-1)^n.$$

The problem of finding an explicit upper bound for $|\gamma_n|$ has been addressed by a number of authors. Briggs [2] started this line of investigation by proving that

$$|\gamma_n| < \left(\frac{n}{2e}\right)^n.$$

In 1985, Matsuoka [12] produced an asymptotic expression for γ_n , and he was also able to simplify his method to derive the explicit form:

$$\forall n \ge 10, \quad |\gamma_n| \le 10^{-4} e^{n \log \log n}. \tag{3}$$

In the paper [10], Kreminski conjectured on numerical evidence (see Table 2) that the above inequality may be considerably strengthened. Recently, Adell [1] proved that, for any $n \ge 4$, we have

$$|\gamma_n| \leq \left(\frac{n!e^m}{m^{n+1}}\left(\frac{n+1}{m}+1\right)+\frac{1}{n+1}\right)\log^{n+1}(m+1),$$

where $m = \lfloor n(1 - 1/\log n) \rfloor$ and $\lfloor x \rfloor$ denotes the integer part of *x*.

Let us turn to the corresponding problem with a character. In 1994, Toyoizumi [13] studied the problem of bounding $|\gamma_n(\chi)|$ when *n* is fixed and *q* goes to infinity. On using Burgess inequality, he showed that for real non-principal χ , when *q* is cube-free, for any $\epsilon > 0$, we have

$$\left|L^{(n)}(1,\chi)\right| \leqslant \left(\frac{1}{(n+1)4^{n+1}} \cdot \frac{L(1+\epsilon,\chi)}{\zeta(1+\epsilon)} + \epsilon\right) \log^{n+1} q,\tag{4}$$

when $q > q_0(\epsilon)$, where $q_0(\epsilon)$ is a constant depending only on ϵ .

In another direction and pursuing the groundbreaking result of Matsuoka [12], Ishikawa [6] studied the asymptotic behavior of $L^{(n)}(1, \chi)$ as $n \to \infty$. He showed that there exists an n_0 such that for all $n \ge n_0$,

$$\left|L^{(n)}(1,\chi)\right| \leqslant q^{n/\log n - 1/2} \exp\left\{n\log\log n - \frac{n\log\log n}{\log n}\right\}.$$
(5)

We note here that the latter result is better than Eq. (4) when q is small with respect to n.

In this paper, we produce an explicit upper bound of $|\gamma_n(\chi)|$ useful for large values of *n*.

Theorem 1. Let χ be a primitive Dirichlet character to modulus q. Then, for every $1 \leq q \leq \frac{\pi}{2} \frac{e^{(n+1)/2}}{n+1}$, we have

$$\frac{|\gamma_n(\chi)|}{n!} \leqslant q^{-1/2} C(n,q) \left(1 + D(n,q)\right)$$

with

Download English Version:

https://daneshyari.com/en/article/4594110

Download Persian Version:

https://daneshyari.com/article/4594110

Daneshyari.com