On bases of Washington's group of circular units of some real cyclic number fields

Milan Werl ${ }^{1}$
Department of Mathematics, Faculty of Science, Masaryk University, Kotlářská 2, Brno, 611 37, Czech Republic

A R T I C L E I N F O

Article history:

Received 30 June 2013
Accepted 17 July 2013
Available online 16 September 2013
Communicated by D. Burns

MSC:

primary 11R27
secondary 11R20, 11R29
Keywords:
Circular units
Class number
Cyclic field

Abstract

Let K be a cyclic field whose genus field in the narrow sense is real and which is totally ramified at each ramifying prime. We shall find a basis for the group $C_{W}(K)$ of circular units of K defined by Washington. This enables us to compute the index of $C_{W}(K)$ in the group of all units of K.

© 2013 Elsevier Inc. All rights reserved.

1. Introduction

For any positive integer r let ζ_{r} be a primitive r th root of unity, e.g. $\zeta_{r}=\mathrm{e}^{2 \pi \mathrm{i} / r}$. By an abelian field we have in mind a finite Galois extension of \mathbb{Q} with an abelian Galois group. According to the Kronecker-Weber theorem we know that any abelian field is a subfield of a suitable cyclotomic field $\mathbb{Q}\left(\zeta_{n}\right)$. For an abelian field F of conductor n (i.e. n is the smallest positive integer such that F is a subfield of $\left.\mathbb{Q}\left(\zeta_{n}\right)\right)$ let $E(F)$ be the

[^0]group of all units of the ring of integers of F. In [13] Sinnott introduced the group $\mathcal{C}(F)$ of circular numbers of F which can be defined by
$$
\mathcal{C}(F)=\left\langle-1, \mathrm{~N}_{\mathbb{Q}\left(\zeta_{r}\right) / \mathbb{Q}\left(\zeta_{r}\right) \cap F}\left(1-\zeta_{r}^{a}\right) ; r, a \in \mathbb{Z}, 1<r \mid n, \operatorname{gcd}(a, r)=1\right\rangle
$$
where $\langle\ldots\rangle$ means "generated as a multiplicative subgroup of F^{\times}", and also the group $C_{S}(F)$ of circular units of F by
$$
C_{S}(F)=E(F) \cap \mathcal{C}(F)
$$

In fact, instead of $\mathcal{C}(F)$ Sinnott used a larger group considering all integers $r>1$, but this group has the same intersection with $E(F)$ (see [12]). He also found an index formula which relates the index $\left[E(F): C_{S}(F)\right]$ and the class number h_{F}^{+}of the maximal real subfield $F \cap \mathbb{R}$ of F but this formula unfortunately contains a non-explicit factor which has been computed only in some special cases; we shall deal with two of them in Remark 4 and in Proposition 7.

Another definition of the group of the circular units of F was suggested by Washington in [14, p. 143]:

$$
C_{W}(F)=F \cap C_{S}\left(\mathbb{Q}\left(\zeta_{n}\right)\right)
$$

Trivially $C_{S}(F) \subseteq C_{W}(F) \subseteq E(F)$, therefore, $C_{W}(F)$ is a better approximation of $E(F)$ than $C_{S}(F)$. Sinnott's group $C_{S}(F)$ is the one that is used most often now. Not much seems to be known about Washington's group $C_{W}(F)$ apart from [4] computing the index $\left[E(F): C_{W}(F)\right]$ for some composita of quadratic fields. There are papers $[10,1,11$, $3,2]$ studying some properties of $C_{W}\left(F_{n}\right)$ in the cyclotomic \mathbb{Z}_{p}-extension $\bigcup_{n=0}^{\infty} F_{n}$ of an abelian field F_{0}; for example, it is known that $\lim _{\leftrightarrows} C_{W}(F) / C_{S}(F)$ is the maximal finite Λ-submodule of $\lim _{\rightleftarrows} E(F) / C_{S}(F)$. But $C_{W}(F)$ deserves more attention, for example the knowledge of an explicit unit in $C_{W}(F)-C_{S}(F)$ can be used in Rubin's machinery to produce annihilators of the class group of F (see [7] and [8] for the notion of "semispecial units").

This paper is another attempt to say more about $C_{W}(F)$. We shall generalize the result of [4] to any real genus field in the narrow sense of an abelian field (see Remark 4 below). But the main aim of this paper is to study $C_{W}(K)$ for a cyclic field K (i.e. an absolutely abelian field with a cyclic Galois group) which is totally ramified at each ramifying prime and whose genus field in the narrow sense is real. Namely, in Proposition 10 we shall describe a \mathbb{Z}-basis of $C_{W}(K)$, then we shall compute the index $\left[C_{W}(K): C_{S}(K)\right]$ and from this and from Sinnott's index formula we obtain an explicit formula for the index $\left[E(K): C_{W}(K)\right]$ containing the class number h_{K} of the field K (see Theorem 11). As a consequence we get a non-trivial divisibility relation for h_{K}.

2. Preliminaries and notations

Let $s \geqslant 2, I=\{1, \ldots, s\}, p_{1}, \ldots, p_{s}$ be distinct primes, q_{i} a power of p_{i} for $i \in I, \zeta_{i}$ be a fixed q_{i} th primitive root of unity for each $i \in I$ (from now on we shall use this new

https://daneshyari.com/en/article/4594136

Download Persian Version:
https://daneshyari.com/article/4594136

Daneshyari.com

[^0]: E-mail address: werl@mail.muni.cz.
 1 The author was supported under the project MUNI/A/0838/2012 of Masaryk University.

