

Contents lists available at ScienceDirect

Journal of Number Theory

An improved upper bound for the argument of the Riemann zeta-function on the critical line II

Timothy S. Trudgian ¹

Mathematical Sciences Institute, The Australian National University, Australia

ARTICLE INFO

Article history:
Received 28 March 2013
Received in revised form 12 June 2013
Accepted 8 July 2013
Available online 26 September 2013
Communicated by David Goss

Keywords: Riemann zeta-function Explicit bounds on S(t)

ABSTRACT

Text. This paper concerns the function S(T), where $\pi S(T)$ is the argument of the Riemann zeta-function along the critical line. The main result is that

$$|S(T)| \le 0.112 \log T + 0.278 \log \log T + 2.510,$$

which holds for all $T \ge e$.

Video. For a video summary of this paper, please click here or visit http://youtu.be/FldP0idE0aI.

© 2013 Elsevier Inc. All rights reserved.

1. Summary of results

This paper is the sequel to [15] and is related to [16]; reference will be made frequently to these papers. Write

$$|S(T)| \le a \log T + b \log \log T + c, \quad \text{for } T \ge T_0,$$
 (1.1)

whence Table 1 provides a brief historical summary.

 $[\]hbox{\it E-mail address: $timothy.trudgian@anu.edu.au.}$

Supported by ARC Grant DE120100173.

	a	b	c	T_0
Von Mangoldt [20] 1905	0.432	1.917	12.204	28.588
Grossmann [6] 1913	0.291	1.787	6.137	50
Backlund [1] 1914	0.275	0.979	7.446	200
Backlund [2] 1918	0.137	0.443	4.35	200
Rosser [11] 1939	1.12	0	9.5	1450
Rosser [12] 1941	0.137	0.443	1.588	1467
Trudgian [15] 2012	0.17	0	1.998	e
Trudgian (Theorem 1) 2012	0.112	0.278	2.510	e

Table 1 Bounds on S(T) in (1.1).

Note that the result in [15] improves on that in [12] when $25 \leqslant T \leqslant 10^{15}$. The purpose of this article is to improve on the result in [12] for all T. This is achieved with the following theorem.

Theorem 1. If $T \geqslant e$, then

$$|S(T)| \le 0.112 \log T + 0.278 \log \log T + 2.510.$$

This implies the following result concerning N(T), the number of complex zeroes of $\zeta(s)$ with imaginary parts in (0,T).

Corollary 1. If $T \geqslant e$, then

$$\left| N(T) - \frac{T}{2\pi} \log \frac{T}{2\pi e} - \frac{7}{8} \right| \leqslant 0.112 \log T + 0.278 \log \log T + 2.510 + \frac{0.2}{T}.$$

It is known (see, e.g., [3,13,4,18,19]) that²

$$|S(T)| \le 1$$
, for $0 \le T \le 280$,
 $|S(T)| \le 2$, for $0 \le T \le 6.8 \times 10^6$,
 $|S(T)| \le 2.31366$, for $0 \le T \le 5.45 \times 10^8$. (1.2)

The approach taken in this paper is to prove results initially for $T > T_0 > 5.45 \times 10^8$, and then for all T using (1.2). Theorem 1 is sharper than Rosser's bound in [12] whenever $T \ge 25$; for smaller values of T one is better placed using (1.2), which is superior to both Theorem 1 and the bound in [12].

Explicit bounds on S(T) are used in calculations concerning the zeros of the zetafunction — see, e.g., [11,12]. Hence there is some interest in obtaining, not necessary the smallest coefficient of $\log T$ in Theorem 1, but good bounds of the form $|S(T)| \leq \alpha \log T$ for all $T \geq T_0$. This is accomplished by choosing appropriate values of parameters η and r that appear in the bound for S(T) in Section 6. The results are summarised in Table 2.

² Indeed, the first two lines in (1.2) are equivalent to Gram's Law holding for all $0 \le T \le 280$ and Rosser's Rule holding for all $0 \le T \le 6.8 \times 10^6$.

Download English Version:

https://daneshyari.com/en/article/4594144

Download Persian Version:

 $\underline{https://daneshyari.com/article/4594144}$

Daneshyari.com