Change of root numbers of elliptic curves under extension of scalars ${ }^{\text {w }}$

Maria Sabitova*
Department of Mathematics, CUNY Queens College, 65-30 Kissena Blvd., Flushing, NY 11367, USA

A R T I C L E I N F O

Article history:

Received 25 June 2012
Received in revised form 23 April
2013
Accepted 11 July 2013
Available online 2 October 2013
Communicated by
Jean-Louis Colliot-Thélène

Abstract

In this paper we study how the root number attached to an elliptic curve E over a finite field extension K of \mathbb{Q}_{3} changes when E is considered as an elliptic curve over a finite Galois extension F of K via extension of scalars. The main result is a formula relating the root number $W(E / F)$ attached to $E \times{ }_{K} F$ to the root number $W(E / K)$ attached to E. © 2013 Elsevier Inc. All rights reserved.

Keywords:

Root number
Elliptic curve
Galois representation

0. Introduction

Let K be a finite field extension of \mathbb{Q}_{p} with a fixed algebraic closure \bar{K} and let $F \subset \bar{K}$ be a finite field extension of K. The main goal of the paper is to relate the root number $W(E / K)$ attached to an elliptic curve E over K to the root number $W(E / F)$ attached to elliptic curve $E \times_{K} F$ over F obtained from E via extension of scalars.

Explicit formulas for $W(E / K)$ in terms of the coefficients of an arbitrary generalized Weierstrass equation of E have been obtained by D. Rohrlich [6] in the case when

[^0]E has potential multiplicative reduction over K and under the additional assumption $p \geqslant 5$ in the case when E has potential good reduction over K. Thus Rohrlich's formulas can be used to calculate $W(E / F)$ using an arbitrary Weierstrass equation of E over K. In the case $p=3$ formulas for $W(E / K)$ were obtained by S. Kobayashi [4] in terms of the coefficients of a minimal Weierstrass equation of E over K, so in order to apply Kobayashi's formulas to calculate $W(E / F)$ one needs to find a minimal Weierstrass equation of E over F. Our motivation is to calculate $W(E / F)$ using a Weierstrass equation of E over K. The cases $p=2$ or $3, E$ has potential good reduction over K, and F is an arbitrary finite field extension of K still remain untreated in full generality. We answer the question when $p=3$ under an additional assumption that F is Galois over K.

Assume E has potential good reduction over K and $F \subset \bar{K}$ is a finite field extension of K. By definition, the root number $W(E / K)$ is the root number of representation σ_{E} of the Weil group $\mathcal{W}(\bar{K} / K)$ of K attached to E. It is known that σ_{E} is a two-dimensional semisimple representation of $\mathcal{W}(\bar{K} / K)$. If σ_{E} is not irreducible, then one can easily deduce from well-known formulas that

$$
W(E / F)=W(E / K)^{[F: K]}
$$

(see e.g. [6, p. 128]).
If σ_{E} is irreducible and p is odd (i.e., $p \neq 2$), then σ_{E} is induced by a multiplicative character of a quadratic extension $H \subset \bar{K}$ of K. Moreover, E has the Kodaira-Néron type $I I I, I I I^{*}, I I, I V, I V^{*}$, or $I I^{*}$ (see Proposition 1.6 below). Furthermore,

- $H=K(\sqrt{-1})$ if E is of type $I I I$ or $I I I^{*}$,
- $H=K\left(\Delta^{1 / 2}\right)$ if E is of type $I I, I V, I V^{*}$, or $I I^{*}$, where Δ is a discriminant of E.

The main results of the paper together with easy cases, which we include for the sake of completeness, can be summarized in the following

Theorem. Let $F \subset \bar{K}$ be a finite field extension of K with ramification index e (F / K) over K. Suppose p is odd, E has potential good reduction over K, and σ_{E} is irreducible.

- If $H \subseteq F$, then

$$
W(E / F)=\left(\frac{-1}{\hat{K}}\right)^{\delta}, \quad \delta= \begin{cases}\frac{[F: K]}{2}, & \text { if } H / K \text { ramified } \\ 0, & \text { if } H / K \text { unramified }\end{cases}
$$

where \hat{K} denotes the residue field of K and $\left(\frac{x}{\hat{K}}\right)$ is the quadratic residue symbol of $x \in \hat{K}$ (Lemma 2.1 below).

- If $H \nsubseteq F, p \geqslant 5$, then

$$
W(E / F)=(-1)^{\alpha+[F: K]} W(E / K)^{[F: K]}
$$

where

https://daneshyari.com/en/article/4594145

Download Persian Version:

https://daneshyari.com/article/4594145

Daneshyari.com

[^0]: 4y Supported by NSF grant DMS-0901230 and by grants 60091-40 41, 64620-00 42 from The City University of New York PSC-CUNY Research Award Program.

 * Fax: +1 7189975882.

 E-mail address: Maria.Sabitova@qc.cuny.edu.

