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Congruences

The Apéry polynomials are given by
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(Those Ap, = Ay(1) are Apéry numbers.) Let p be an odd prime. We
show that
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and that
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for any p-adic integer x # 0 (mod p). This enables us to determine
explicitly Zf;(} (£1)*A, mod p, and Zg;g(—l)kAk mod p? in the
case p =2 (mod 3). Another consequence states that
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_ 4x2 —2p (mod p?) ifp=x%>+4y?(x,y€7),
~ | 0 (mod p?) if p =3 (mod 4).
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We also prove that for any prime p > 3 we have
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where By, B1, B>, ... are Bernoulli numbers.
© 2012 Elsevier Inc. All rights reserved.

1. Introduction

The well-known Apéry numbers given by

nn2n+k2 nn+/<22k2
An:§<’<> ( k ) i;( 2k ) (k) (neN={0,1,2,...})

play a central role in Apéry’s proof of the irrationality of ¢(3) = Y 72, 1/n3 (see Apéry [Ap] and
van der Poorten [Po]). They also have close connections to modular forms (cf. Ono [O, pp. 198-203]).
The Dedekind eta function in the theory of modular forms is defined by

oo
n(m)=q"]](1-¢") withg=e*"",

where T € H={z € C: Im(z) > 0} and hence |q| < 1. In 1987 Beukers [B] conjectured that

Ap-1;2=a(p) (mod p?) forany prime p > 3,
where a(n) (n=1,2,3,...) are given by
X
nteontan =q[J(1-¢"* (1 -q* Za(n)q
n=1

This was finally confirmed by Ahlgren and Ono [AO] in 2000.
We define Apéry polynomials by

- n2n+k2k - n+I<22k2k
An(x)=Z<k> ( L >x =l§< 2/<) (k> X (neN). (1.1)
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Clearly A,(1) = A,. Motivated by the Apéry polynomials, we also introduce a new kind of polynomi-

als:
n N n/2] 2 191\ 2
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