
The Journal of Systems and Software 102 (2015) 146–157

Contents lists available at ScienceDirect

The Journal of Systems and Software

journal homepage: www.elsevier.com/locate/jss

Progressive online aggregation in a distributed stream system

Dingyu Yang a, Jian Cao a,∗, Sai Wu b, Jie Wang c

a Department of Computer Science and Engineering, Shanghai Jiao Tong University, 800 Dong Chuan Road, Minhang, Shanghai 200240, China
b College of Computer Science, Zhejiang University, Hangzhou 310027, P.R. China
c Department of Civil and Environmental Engineering, Stanford University, Stanford, CA 94305, USA

a r t i c l e i n f o

Article history:

Received 22 March 2014

Revised 23 August 2014

Accepted 9 November 2014

Available online 29 November 2014

Keywords:

Online aggregation

Stream processing

Actor model

a b s t r a c t

Interactive query processing aims at generating approximate results with minimum response time. However,

it is quite difficult for a batch-oriented processing system to progressively provide cumulatively accurate

results in the context of a distributed environment. MapReduce Online extends the MapReduce framework

to support online aggregation, but it is hindered by its processing speed in keeping up with ongoing real-time

data events. We deploy the online aggregation algorithm over S4, a scalable stream processing system that is

inspired by the combined functionalities of MapReduce and Actor model. Our system applies an asynchronous

message communication mechanism from actor model to support online aggregation. It can process large

scale data stream with high concurrency in a short response time. In this system, we adopt a distributed

weighted random sampling algorithm to solve biased distribution between different streams. Furthermore,

a multi-level query processing topology is developed to reduce overlapped processing for multiple queries.

Our system can provide continuous window aggregation with a confidence interval and error bound. We

have implemented our system and conducted plentiful experiments over the TPC-H benchmark. A large

number of experiments are carried out to demonstrate that by using our system, high-quality query results

can be generated within a short response time and that the approach outperforms MapReduce Online on data

streams.

© 2014 Elsevier Inc. All rights reserved.

1. Introduction

Online aggregation is a valuable research topic proposed by

Hellerstein et al. (1997), aiming at faster response to Online Analysis

Processing (OLAP) for business analysis and decision making. Reduced

accuracy is the price of shorter response times, for the simple reason

that the whole dataset would not be processed in that short time.

Instead of providing final results after processing all the data, online

aggregation progressively generates approximate results to users and

the corresponding statistical analysis (e.g., confidence intervals or er-

ror bounds). The results are refined by statistical approaches with

more and more data, until the confidence interval and error bounds

reach a satisfactory level.

One important issue that has been addressed is how to get early

aggregation results in a distributed system. Some researchers have

made contributions to this research issue. MapReduce Online (Condie

et al., 2010) exploits the powerful data processing capability of

the Hadoop MapReduce framework so that it can support online

∗ Corresponding author. Tel.: +86 21 34204426; fax:+86 21 34204728.

E-mail addresses: yangdingyu8686@sjtu.edu.cn (D. Yang), cao-jian@sjtu.edu.cn

(J. Cao), wusai@zju.edu.cn (S. Wu), jiewang@stanford.edu (J. Wang).

aggregation. Since MapReduce architecture was originally highly

optimized for batch processing, Hadoop, an open-source implemen-

tation of MapReduce, has achieved a general consensus, which un-

doubtedly makes it an optimal choice for applications like online ag-

gregation. However, the work of Condie et al. (2010) fails to provide

us with a statistical analysis for online aggregation. The work Pansare

et al. (2011) solves the “inspection paradox” problem in MapReduce

jobs and applies a Bayesian framework for producing estimates and

confidence bounds. But their model is very complex and needs 3m + 2

dimensions for one query (where m is the machine number). For such

high dimensions, it is difficult to extend to high speed streams.

Another challenge is how to randomly generate samples from dis-

tributed streams. As data volume increases, it is no longer practical to

collect all the data together and then perform a sampling algorithm

since it needs large memories to cache the stream data to generate

samples. For example, some sensor applications continuously send

data to a processing system with high speed and streams from differ-

ent sites might have multiple data distributions so that the samples

cannot be generated simply. These problems have led to investiga-

tions into how to randomly generate samples on a continuous and

distributed streaming data.

In this paper, we introduce our approach of deploying a dis-

tributed online aggregation algorithm over an open-source system S4

http://dx.doi.org/10.1016/j.jss.2014.11.027

0164-1212/© 2014 Elsevier Inc. All rights reserved.

http://dx.doi.org/10.1016/j.jss.2014.11.027
http://www.ScienceDirect.com
http://www.elsevier.com/locate/jss
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jss.2014.11.027&domain=pdf
mailto:yangdingyu8686@sjtu.edu.cn
mailto:cao-jian@sjtu.edu.cn
mailto:wusai@zju.edu.cn
mailto:jiewang@stanford.edu
http://dx.doi.org/10.1016/j.jss.2014.11.027


D. Yang et al. / The Journal of Systems and Software 102 (2015) 146–157 147

(S4, 2010), a scalable stream processing system. In order to sup-

port online aggregation, we propose a distributed weighted random

sampling algorithm, which does not only sample from distributed

streams, but also generates samples with different weights. Our

model parses multiple queries into a complex topology to guide the

execution, which is called Multi-level Query Processing. Tuples are en-

capsulated as events, and query processing is performed by consecu-

tive processing elements, each responsible for a stage in the complex

task. Such a separation-of-duty processing style makes the expensive

aggregation queries can be processed in a more reliable and more

efficient way. For concurrent queries, we propose a scheme called

Synthetic Processing Topology to merge streams that may incur re-

peated computing on overlapped data. We can continuously provide

aggregation estimation with a confidence interval and error bound.

Our implementation also makes use of the check-pointing technique

of Apache S4, so that our aggregation framework can achieve high

availability.

In summary, the contributions of this paper are listed as follows:

• We present a distributed weighted random sampling algorithm,

which can quickly generate samples from a distributed stream. We

extend Weighted Reservoir Sampling in distributed stream sites

and apply a Coordinator operator to merge the samples.
• We propose actor model to solve complex logical problems and

asynchronously process distributed stream data. An incremental

processing mechanism is designed to support one-pass process.

As data are read, the stream system fast processes it in memory

and updates the results to achieve high performance.
• We develop a dynamic processing topology to direct the stream

processing when facing multiple new queries. The topology can

reduce the number of overlapping operations. The problem can be

decomposed into a set of independent tasks which communicate

with each other by sending and receiving messages.
• We implement the online aggregation algorithm and deploy it

on the distributed stream system S4. Extensive experiments have

been conducted to show the efficiency and robustness. It can pro-

duce accurate results very quickly through asynchronous message

exchange. In general, our system performs 10–30 times faster than

MapReduce Online on stream data.

The rest of the paper is organized as follows. In Section 2, we

present an example to illustrate the problem and how we deal with it

differently from former work. Section 3 provides the detailed descrip-

tion of our system and methodology. Section 4 presents a statistical

analysis of the confidence interval and error bound. Extensive exper-

iment results are reported in Section 5. Section 6 offers a brief review

of related studies. Finally, we conclude this paper in Section 7.

2. Background

2.1. Actor model

The actor model (Agha, 1985) is a mathematical theory of compu-

tation, that treats “Actors” as the universal primitives of concurrent

computation. It has been used both as a framework for a theoretical

understanding of computation, and as the theoretical basis for several

practical implementations of concurrent systems.

An actor is a computational entity that, in response to a message

it receives, can concurrently (Agha, 1985):

• send a finite number of messages to other actors;
• create a finite number of new actors;
• designate the behavior to be used for the next message it receives.

The communication between actors can be considered to be either:

• Synchronous, where the sender and the receiver of a communica-

tion are both ready to communicate;

Table 1

SQL example.

SELECT Average(Value) FROM (

SELECT Top 50 * FROM (

SELECT Orderkey, Sum(Quantity) as Value

FROM Lineitem GROUP BY Orderkey)

ORDER BY Value)

• Asynchronous, where the receiver does not have to be ready to

accept a communication when the sender sends it.

The processing of communications depends on the behavior of

individual actors and buffered communication can improve the ef-

ficiency in execution by pipelining multiple actors. A potentially

variable topology is also created to define the relationships among

actors.

2.2. Online aggregation

In tradition, aggregation is done in a batch mode and users need

to keep waiting without any feedback until the aggregation process

completes and returns the results. Online aggregation (Hellerstein

et al., 1997) is proposed to extend batched aggregation by im-

proving the interactive behavior of database systems in order to

process expensive analytical queries. It can progressively refine

running estimates of the final aggregation values and statistical

analysis is continuously displayed to users. Users can observe the

progress of the aggregation and control the execution process on the

fly.

We illustrate online aggregation by taking the SQL statement in

Table 1 as an example. The final aggregation result is 3250. While

30% of the data have been processed, users can get the early result

3200 with estimation. The confidence interval (3200 ± 10) shows the

accuracy of the early result with 95% probability. The aggregation can

be stopped during the processing if the result is good enough.

2.3. An example of applying actor model

In this paper, we adopt a pipeline-style approach by using an ac-

tor model to execute complex queries over a large volume of data.It

decomposes a complex job into independent subtasks, which are pro-

cessed by actors concurrently. The communication link between two

tasks is used to send and receive messages. The job is organized in

a directed acyclic topology, which will be automatically deployed

to physical resources in practical systems. The data are transferred

through the communication links in the topology and processed in

memory.

As an example, suppose we have a complex query with nested

aggregate and sort operations. The purpose is to obtain the aver-

age summary quantity of the top 50 ordered by orderkey in table

lineitem from the TPC-H benchmark. The SQL statement is shown in

Table 1.

As it is shown in Fig. 1, the input stream is continuously sent to

different actors and each actor can support incremental processing.

Partition Actor splits the data based on the value of orderkey. In our

example, data events with the same orderkey are sent to the same ac-

tor through one specific communication link. When data events with

a specific orderkey arrive in a Group Actor, the Group Actor incremen-

tally aggregates the results of the quantity. After that, the new results

will be sent to the next stage Order Actor. Order Actor concurrently

sorts the data results and Filter Actor filters out the top 50 orders in

local partition. The top 50 orders in each partition are then merged

together in Merge Actor. The output of Merge Actor is the global top

50 orders and is sent to Average Actor. Finally, the average quantity of

the top 50 orders will be calculated. During the whole process, actors

process data in an asynchronous and parallel way.



Download English Version:

https://daneshyari.com/en/article/459460

Download Persian Version:

https://daneshyari.com/article/459460

Daneshyari.com

https://daneshyari.com/en/article/459460
https://daneshyari.com/article/459460
https://daneshyari.com

