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Binomial coefficients where (:) is the usual combinatorial number. We also provide the
moments in the Catalan triangle whose (n, p) entry is defined by
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and, in particular, new identities involving the well-known Catalan
numbers.
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0. Introduction

Although there exist several triangles known as the “Catalan triangle”, the following one is one of
the most-standing form
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k\m | 0O 1 2 3 4 5 6
0 1
1 1 1
2 1 2 2
3 1 3 5 5
4 1 4 9 14 14
5 1 5 14 28 42 42
6 1 6 20 48 90 132 132

see for example [10]. Each entry Cy n is defined by
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, o<m«<k.

Notice that Cy  is the well-known Catalan number Cy, given by the formula
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The Catalan numbers may be defined recursively by Co =1 and C = ZL_(} CiCx—1—i for k > 1. These
numbers appear in a wide range of problems, see [11]. For instance, the Catalan number Cj counts
the number of ways to triangulate a regular polygon with k + 2 sides; or, let 2k people seat around
a circular table, the Catalan number Cj gives the number of ways that all of them are simultaneously
shaking hands with another person at the table in such a way that none of the arms cross each

other.

In the Catalan triangle, we now consider numbers Ci , in the same diagonal such that k +m is

odd. We write k+m =2n—1 and p =n —m to get Shapiro’s triangle introduced in [8],

n\p 1 2 3 4 5 6
1 1

2 2 1

3 5 4 1

4 14 14 6 1

5 42 48 27 8 1

6 132 165 110 44 10 1

whose entries are given by

_p( 2n
Bn,p~:E n—p) n,peN, p<n.

On the other hand, when k +m =2n and p =n —m + 1, we recover the following triangle
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