

Contents lists available at ScienceDirect

Journal of Number Theory

www.elsevier.com/locate/jnt

Moments of combinatorial and Catalan numbers ${}^{\bigstar}$

Pedro J. Miana^{a,*}, Natalia Romero^b

^a Departamento de Matemáticas & I.U.M.A., Universidad de Zaragoza, 50009 Zaragoza, Spain
^b Departamento de Matemáticas y Computación, Universidad de La Rioja, 26004 Logroño, Spain

ARTICLE INFO

Article history: Received 20 August 2009 Revised 10 December 2009 Available online 9 April 2010 Communicated by Pilar Bayer

Keywords: Catalan numbers Combinatorial identities Binomial coefficients

ABSTRACT

In this paper we obtain the moments $\{\Phi_m\}_{m \ge 0}$ defined by

$$\Phi_m(n) := \sum_{p=1}^{n+1} (2p-1)^m \left(\frac{2n+1}{n+1-p}\right)^2,$$

$$n \in \mathbb{N}, \ m \in \mathbb{N}_0 := \mathbb{N} \cup \{0\},$$

where $\binom{m}{n}$ is the usual combinatorial number. We also provide the moments in the Catalan triangle whose (n, p) entry is defined by

$$A_{n,p} := \frac{2p-1}{2n+1} \begin{pmatrix} 2n+1\\ n+1-p \end{pmatrix}, \quad n, p \in \mathbb{N}, \ p \leq n+1,$$

and, in particular, new identities involving the well-known Catalan numbers.

© 2010 Elsevier Inc. All rights reserved.

0. Introduction

Although there exist several triangles known as the "Catalan triangle", the following one is one of the most-standing form

* Corresponding author.

 $^{^{*}}$ The first author has been partly supported by the DGI-FEDER Project MTM 2007-61446 and the DGA project E-64. The second author has been partly supported by the Ministery of Science and Innovation, Project MTM 2008-01952.

E-mail addresses: pjmiana@unizar.es (P.J. Miana), natalia.romero@unirioja.es (N. Romero).

$k \setminus m$	0	1	2	3	4	5	6	
0	1							
1	1	1						
2	1	2	2					
3	1	3	5	5				
4	1	4	9	14	14			
5	1	5	14	28	42	42		
6	1	6	20	48	90	132	132	
					•••			

see for example [10]. Each entry $C_{k,m}$ is defined by

$$C_{k,m} := \frac{(k+m)!(k-m+1)}{m!(k+1)!}, \quad 0 \le m \le k.$$

Notice that $C_{k,k}$ is the well-known Catalan number C_k , given by the formula

$$C_k = \frac{1}{k+1} \binom{2k}{k}, \quad k \ge 1.$$

The Catalan numbers may be defined recursively by $C_0 = 1$ and $C_k = \sum_{i=0}^{k-1} C_i C_{k-1-i}$ for $k \ge 1$. These numbers appear in a wide range of problems, see [11]. For instance, the Catalan number C_k counts the number of ways to triangulate a regular polygon with k + 2 sides; or, let 2k people seat around a circular table, the Catalan number C_k gives the number of ways that all of them are simultaneously shaking hands with another person at the table in such a way that none of the arms cross each other.

In the Catalan triangle, we now consider numbers $C_{k,m}$ in the same diagonal such that k + m is odd. We write k + m = 2n - 1 and p = n - m to get Shapiro's triangle introduced in [8],

$n \setminus p$	1	2	3	4	5	6		
1	1							
2	2	1						
3	5	4	1					(1)
4	14	14	6	1				(1)
5	42	48	27	8	1			
6	132	165	110	44	10	1		

whose entries are given by

$$B_{n,p} := \frac{p}{n} \binom{2n}{n-p}, \quad n, p \in \mathbb{N}, \ p \leq n.$$

On the other hand, when k + m = 2n and p = n - m + 1, we recover the following triangle

Download English Version:

https://daneshyari.com/en/article/4594643

Download Persian Version:

https://daneshyari.com/article/4594643

Daneshyari.com