
The Journal of Systems and Software 102 (2015) 35–57

Contents lists available at ScienceDirect

The Journal of Systems and Software

journal homepage: www.elsevier.com/locate/jss

Semi-automatic architectural pattern identification and documentation

using architectural primitives

Thomas Haitzer∗, Uwe Zdun

Software Architecture Research Group, University of Vienna, Vienna, Austria

a r t i c l e i n f o

Article history:

Received 8 January 2014

Revised 19 December 2014

Accepted 20 December 2014

Available online 27 December 2014

Keywords:

Software architecture

Architectural component views

Architectural pattern

a b s t r a c t

In this article, we propose an interactive approach for the semi-automatic identification and documentation

of architectural patterns based on a domain-specific language. To address the rich concepts and variations

of patterns, we firstly propose to support pattern description through architectural primitives. These are

primitive abstractions at the architectural level that can be found in realizations of multiple patterns, and they

can be leveraged by software architects for pattern annotation during software architecture documentation

or reconstruction. Secondly, using these annotations, our approach automatically suggests possible pattern

instances based on a reusable catalog of patterns and their variants. Once a pattern instance has been

documented, the annotated component models and the source code get automatically checked for consistency

and traceability links are automatically generated. To study the practical applicability and performance of

our approach, we have conducted three case studies for existing, non-trivial open source systems.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

During maintenance and evolution of a software system, a deep

understanding of the system’s architecture is essential. This knowl-

edge about a system’s architecture tends to erode over time (Jansen

et al., 2007) or even get lost. In a recent study Rost et al. (2013) found

that architecture documentation is frequently outdated, updated only

with strong delays, and inconsistent in detail and form. They also

found that developers prefer interactive (navigable) documentation

compared to static documents. This also reflects our personal expe-

riences as well as those of others. For instance, our colleague Neil

Harrison shared the following story from his experiences with large-

scale industrial systems (shortened): “Once upon a time I worked on

a large system that was already a few years old. It had a well-defined

architecture. When I started, I was given copies of three or four docu-

ments that described the architecture. In addition, I watched several

videotapes in which the architects described the architecture. As a re-

sult, I gained a good understanding of the architecture of the system.

After a few years, I left the project to work on other things. But several

years later I returned. The system was still being used and was under

active development. Of course, it had changed greatly to add new ca-

pabilities and support changes in technology. Underneath it all, the

∗ Corresponding author. Tel.: +43 1 4277 78521; fax: +43 1 4277 8 78521.

E-mail addresses: thomas.haitzer@univie.ac.at (T. Haitzer), uwe.zdun@univie.ac.at

(U. Zdun).

URL: http://informatik.univie.ac.at/thomas.haitzer (T. Haitzer),

http://informatik.univie.ac.at/uwe.zdun (U. Zdun)

original architecture was largely intact, but it was much more obscure.

I wanted to refresh my architectural memory, so I asked around for

the original memos and videotapes. Nobody had even heard of them.

Critical architectural knowledge had been lost. People were actually

afraid to change the original code, because they did not understand

how it worked.”

Software architecture documentation or, in case of lost architec-

tural knowledge, software architecture reconstruction (Ducasse and

Pollet, 2009) techniques can be used to (re)establish the proper ar-

chitectural documentation of the software system. An essential part

of today’s architectural knowledge is information about the patterns

used in a system’s architecture. Patterns can be seen as building blocks

for the composition of a system’s architecture (Beck and Johnson,

1994; Buschmann et al., 1996). This is especially valid for architectural

patterns or styles which describe a system’s fundamental structure

and behavior (Lange and Nakamura, 1995). A considerable number

of software architecture reconstruction approaches support software

pattern identification (Beck and Johnson, 1994; Bergenti and Poggi,

2000; Shull et al., 1996). Most of these approaches (see e.g. Bergenti

and Poggi, 2000; Heuzeroth et al., 2003; Krämer and Prechelt, 1996;

Philippow et al., 2003) focus on automatically detecting design pat-

terns in the source code. Such pattern identification approaches are

often restricted to design patterns that were identified by Gamma

et al. (1995) (GoF patterns). Architectural patterns, in contrast, con-

vey broader information about a system’s architecture as they usually

are described at a larger scale than GoF patterns.

There are a number of important problems in automatic pattern

identification in general and especially in architectural pattern

http://dx.doi.org/10.1016/j.jss.2014.12.042

0164-1212/© 2015 Elsevier Inc. All rights reserved.

http://dx.doi.org/10.1016/j.jss.2014.12.042
http://www.ScienceDirect.com
http://www.elsevier.com/locate/jss
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jss.2014.12.042&domain=pdf
mailto:thomas.haitzer@univie.ac.at
mailto:uwe.zdun@univie.ac.at
http://informatik.univie.ac.at/thomas.haitzer
http://informatik.univie.ac.at/uwe.zdun
http://dx.doi.org/10.1016/j.jss.2014.12.042


36 T. Haitzer, U. Zdun / The Journal of Systems and Software 102 (2015) 35–57

identification. Existing approaches often only focus on the task of

identifying a system’s design patterns while the documentation of

the reconstructed patterns and the future evolution of the system are

not considered (which is just as essential as identifying an architec-

tural pattern).

In addition, architectural patterns are often much harder to detect

directly in the source code than GoF design patterns as there is often a

large number of classes involved in the implementation of the pattern

and the variations between different instances of the patterns are very

large. As a consequence of the large number of involved classes there

is a possibly huge search space for these patterns that grows with

every class and increases execution times (Ducasse and Pollet, 2009).

A big problem of pattern identification is the variability in pattern

implementations. Only a very few pattern identification approaches

consider pattern variations at all, and they are usually focused on

GoF design patterns only (Wendehals, 2003; Wendehals et al., 2001).

For instance, hardly any implementation of a system strictly adheres

to the Layers pattern (Buschmann et al., 1996) as described in the

textbook, but a huge number of systems are designed based on Layers.

To give a concrete example, in the definition of the Layers pattern, a

layer only has access to the functionality provided by the layer below

it. However, this rule is often violated for cross-cutting concerns like

performance, security, or logging. As a consequence, many layered

architectures contain parts that do not strictly adhere to the Layers

pattern. In addition to this, the Layers pattern suggests but does not

in any way enforce clean interfaces between the layers. For these

reasons, it is hard to automatically detect architectural patterns like

Layers.

Another problem of automatic pattern identification is the accu-

racy of the approaches, which is often not sufficient. That is, some

approaches treat pattern instances they find as candi-

dates (Wendehals, 2003). However the likelihood of false positives

increases with system size and can lead to precision values around

40% (Krämer and Prechelt, 1996) which means that 60% of the found

pattern instances are false positives. This requires substantial manual

effort to review the found pattern instances.

In the light of the aforementioned problems, we formulated the

following research questions:

RQ1 How far can a semi-automatic architectural pattern approach

go toward the goal of identifying the patterns in architectural

reconstruction?

RQ2 How far can a semi-automatic architectural pattern approach

go toward the goal of maintaining documented patterns during

the further evolution of a reconstructed architecture?

RQ3 In how far are the concepts and tools applicable in existing

real-life systems?

RQ4 How efficient are the actual pattern instance matching algo-

rithms that are based on primitives?

RQ5 Are primitives and an adaptable pattern catalog adequate

means to handle the variability inherent to architectural pat-

terns?

The main contributions of this article are, first, to suggest a novel

semi-automatic architectural pattern identification approach that

tackles the aforementioned problems that arise during the docu-

mentation and evolution of architectural patterns like the variability

inherent to patterns, consistency between the documented architec-

ture and the source code, and the large number of source code arti-

facts that are related to the implementation of architectural patterns.

Second, we show the approach’s feasibility in terms of tool support

(in the context of three open source case studies), and to study the

performance of the approach (also in the context of these cases).

We aim to assist the software architect during the reconstruction of

architectural knowledge as well as supporting the architect in the

documentation of the reconstructed architectural knowledge. After

the architectural knowledge has been reconstructed and documented

with our approach, we support the software architect in keeping the

created architectural documentation in sync with the source code of

the application. As Clements et al. (2002) state, a strong architecture

is only useful if it is properly documented in order to allow others to

quickly find information about it.

Our proposed solution is an interactive approach for the semi-

automatic identification and documentation of architectural patterns

based on a set of Domain Specific Languages (DSLs). It consists of the

following main components:

• Architecture Abstraction DSL: In our main DSL, the Architecture

Abstraction DSL, the software engineers can semi-automatically

create an abstraction of an architectural component view based

on design models or during architecture reconstruction. To ad-

dress the rich concepts and variations of patterns, we propose to

use architectural primitives (Zdun and Avgeriou, 2005) that can

be leveraged by software engineers for pattern annotation during

software architecture documentation and reconstruction. Archi-

tectural primitives are primitive abstractions at the architectural

level (i.e. defined for components, connectors, and other architec-

tural abstractions1) that can be found in realizations of multiple

patterns.
• Pattern Instance Documentation Tool: Using the architectural prim-

itive annotations, our approach provides a Pattern Instance Docu-

mentation Tool which automatically suggests possible pattern in-

stances based on the architectural component view of a system

and a pattern catalog.
• Pattern Catalog DSL: The pattern catalog contains templates of the

architectural patterns to be identified. It is customizable, reusable

and integrates support for pattern variability. Our approach leads

to a reduced search space for patterns, as we search for patterns

only in the created architectural component view instead of the

source code.
• Pattern Instance DSL: Identified pattern instances are documented

using the Pattern Instance DSL which uses the artifacts defined

in the Architecture Abstraction DSL and the Pattern Catalog DSL to

permanently store pattern instance documentations.

We automatically generate traceability links between the archi-

tectural abstractions and the source code (more specifically, the au-

tomatically generated class models of the source code), the architec-

tural abstractions and the selected pattern instances, and the pattern

instances and the pattern catalog. When artifacts are changed, the

traceability links are used to automatically check the consistency of

all the artifacts. Automated consistency checking aids the software

engineers during the incremental architecture documentation pro-

cess, when new artifacts are identified and documented. For example,

the system automatically detects when the pattern catalog is used to

customize an existing pattern and these changes cause an existing

instance of this pattern to be no longer valid. The consistency checks

are used throughout the evolution of the documented system and

report any occurring violations within seconds.

This article is structured as follows: In Section 2 we briefly explain

architectural patterns and architectural primitives as our background.

We give an overview of our approach in Section 3, and present it in

detail in Section 4. In Section 5 we present three case studies of open

source systems in which we have applied our approach to test its

applicability. As it is crucial for our approach that it works smoothly

1 Today, the component and connector view (or component view for short) of an

architecture is a view that is often considered to contain the most significant archi-

tectural information (Clements et al., 2002). Taylor et al. (2010) define components as

architectural entities that encapsulate a subset of a system’s functionality and/or data.

Each component has an explicitly defined interface that restricts access to the compo-

nent’s functionality and data as well as explicitly defined dependencies on its required

execution context. They define a connector as an architectural building block that is

tasked with effecting and regulating interactions among components.



Download English Version:

https://daneshyari.com/en/article/459470

Download Persian Version:

https://daneshyari.com/article/459470

Daneshyari.com

https://daneshyari.com/en/article/459470
https://daneshyari.com/article/459470
https://daneshyari.com

