
The Journal of Systems and Software 102 (2015) 58–71

Contents lists available at ScienceDirect

The Journal of Systems and Software

journal homepage: www.elsevier.com/locate/jss

Power-aware scheduling of compositional real-time frameworks

Guy Martin Tchamgoue, Kyong Hoon Kim∗, Yong-Kee Jun

Department of Informatics, Gyeongsang National University, 501 Jinju-daero, Jinju 660-701, South Korea

a r t i c l e i n f o

Article history:

Received 2 July 2014

Revised 10 November 2014

Accepted 13 December 2014

Available online 20 December 2014

Keywords:

Compositional and hierarchical real-time

scheduling

Periodic resource model

Periodic task model

Power-aware scheduling

a b s t r a c t

The energy consumption problem has become a great challenge in all computing areas from modern handheld

devices to large data centers. Dynamic voltage scaling (DVS) is widely used as mean to reduce the energy

consumption of computer systems by lowering whenever possible the voltage and operating frequency

of processors. Unfortunately, existing compositional real-time scheduling frameworks have been focusing

only on efficient scheduling of tasks inside their components given a resource model, providing no interest

on power/energy consumption. In this paper, we define the real-time DVS problem for a compositional

scheduling framework. Considering the periodic resource model, we propose optimal static DVS schemes at

system, component, and task levels. We also introduce component and task level dynamic DVS schemes that

take advantage of runtime unused slack times and resource availability to provide even better energy savings.

Finally, we provide power-aware schedulability conditions to guarantee the feasibility of each component

under DVS for the Earliest Deadline First and the Rate Monotonic scheduling algorithms. Through simulations,

we showed that our schemes can reduce the energy consumption of a component by up to 96%.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

Recently, computation and communication have radically shifted

to mobile and portable computing platforms with the birth of new

devices like smartphones, tablet computers, smart watches, smart

robots, wearable computers, unmanned vehicles, and smart au-

tonomous vehicles. However, instead of using low power proces-

sors, these devices rather rely on more and more powerful processors

to satisfy the needs of their complex and sophisticated software. A

common problem encountered by users of these devices is the short

battery life. This problem is the direct consequence of the inherent

conflict existing in the design goals of these devices (Pillai and Shin,

2001). As mobile systems, they should be designed to maximize bat-

tery life, but as smart devices, they need powerful enough processors,

which consume more energy than those in simpler devices, thus re-

ducing battery life. Despite the continuous advances in semiconduc-

tor and battery technologies that allow microprocessors to provide

much greater computation per unit of energy and longer total bat-

tery life, the fundamental tradeoff between performance and battery

life remains critically important. Thus, at design level, two conflicting

problems need to be solved: the complexity of software systems and

the power/energy consumption of the required hardware. Neverthe-

less, the power consumption problem is a challenge in all computing

∗ Corresponding author. Tel.: +82 557721375.

E-mail addresses: guymt@ymail.com (G.M. Tchamgoue), khkim@gnu.ac.kr

(K.H. Kim), jun@gnu.ac.kr (Y.-K. Jun).

areas including large data centers and cloud computing, where reduc-

ing the energy consumption directly impacts the management cost

and contributes to a greener computing environment.

To handle the growth and complexity of software systems, the

component-based design has been widely adopted as it proposes to

decompose a single complex system into independent subsystems

or components and provides ways to reassemble them into a flexi-

ble hierarchically scheduled framework with real-time guarantees to

each subsystem. This design facilitates the reuse of components that

may therefore be developed in different environments. Compositional

real-time scheduling frameworks are generally organized in a tree-

like structure and allow components to share resources transparently

using different scheduling policies. In the hierarchy, an upper-layer

component decides the amount of resource to be supplied to its child

components according to a resource supply scheme.

Significant research efforts have so far been made and many com-

positional scheduling frameworks (Burmyakov et al., 2014; Easwaran

et al., 2009; Phan et al., 2010; Shin and Lee, 2008; Tchamgoue et al.,

2013) proposed to support various real-time task models. With these

frameworks come a variety of resource supply models to govern

the resource demand and supply in the system. Unfortunately, these

scheduling frameworks have been focusing only on efficient schedul-

ing of tasks inside their components given a resource model, provid-

ing no interest on power/energy consumption, which however has

become a hot issue in many recent real-time embedded systems.

Thus, number of techniques (Aydin et al., 2004; Niu and Li, 2011;

Pillai and Shin, 2001; Seo et al., 2008; Zhuravlev et al., 2013) have

http://dx.doi.org/10.1016/j.jss.2014.12.031

0164-1212/© 2015 Elsevier Inc. All rights reserved.

http://dx.doi.org/10.1016/j.jss.2014.12.031
http://www.ScienceDirect.com
http://www.elsevier.com/locate/jss
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jss.2014.12.031&domain=pdf
mailto:guymt@ymail.com
mailto:khkim@gnu.ac.kr
mailto:jun@gnu.ac.kr
http://dx.doi.org/10.1016/j.jss.2014.12.031


G.M. Tchamgoue et al. / The Journal of Systems and Software 102 (2015) 58–71 59

been suggested based on the dynamic scaling voltage (DVS), which

is available on almost all modern microprocessors, to reduce the

energy/power consumption of computing systems. However, these

techniques cannot blindly be applied to compositional scheduling

frameworks, since they all assume the resource to be continuously

available, whereas the resource availability in these new systems is

dictated by the resource model that may be periodic for example (Shin

and Lee, 2003). DVS dynamically adjusts both the supply voltage and

operating frequency to reduce the energy consumption of a processor.

Thus, one can achieve low performance whenever the full processing

speed is not required by simply scaling down the frequency of the

processor. Since the power consumption of a processor is a strictly

increasing convex function of the supply voltage, the energy dissi-

pated per computation cycle also scales quadratically to the supply

voltage (Aydin et al., 2004; Pillai and Shin, 2001), allowing DVS to

potentially provide significant energy savings.

In this paper, we address the power-aware scheduling of time-

constrained tasks in a compositional real-time scheduling framework.

We consider the compositional real-time scheduling framework with

periodic resource model (Shin and Lee, 2008), and solve the composi-

tional real-time dynamic voltage scaling (CRT-DVS) problem: adjust

the supply voltage and operating frequency of the processor to mini-

mize the energy consumption of the system while still guaranteeing the

deadlines of individual tasks inside each component. Considering the

Earliest Deadline First (EDF) and the Rate Monotonic (RM) scheduling

algorithms, we analyze the schedulability of a compositional real-

time scheduling framework under DVS. We propose optimal static

DVS schemes that assign processor speed at system, component, or

task levels to minimize the energy consumption assuming the worst-

case workload of each component. Furthermore, we take advantage of

unused resources at runtime to introduce dynamic DVS algorithms at

component and task levels for even more energy reduction. Through-

out simulations on synthetic workloads, we show that our schemes

can reduce the energy consumption of a component by up to 96%.

On a real-world avionics benchmark, our dynamic schemes show a

significant gain in energy of up to 39.6% on average.

For the remainder, this paper is organized as follows. Section 2

defines the system model including the compositional real-time

scheduling framework and the power model, and presents a mo-

tivating example followed by the problem definition. Section 3 is

about the schedulability analysis of the system. Section 4 focuses on

the static schemes, while Section 5 presents the dynamic schemes.

Section 6 evaluates the performances of the proposed schemes. Some

additional considerations are given in Section 7. The related work is

presented in Section 8 and the paper concluded in Section 9.

2. System model and problem definition

This section provides an overview of compositional real-time

scheduling frameworks. It also presents the power model and clarifies

some assumptions and notations to be used in the article. Finally, a

motivation example followed by our problem definition is presented.

2.1. Compositional real-time scheduling framework

In a compositional scheduling framework (Shin and Lee, 2008;

Tchamgoue et al., 2013), a component is the basic scheduling unit and

is defined by C(W, A), where W is the workload and A the scheduling

algorithm of the component. Components are organized in a tree-like

hierarchy where an upper-layer component allocates resources to its

child components, as shown in Fig. 1.

In this paper, we assume a compositional scheduling framework

for periodic task model (Shin and Lee, 2008). Thus, the workload W

of each component C(W, A) consists of n periodic real-time tasks.

Each task τi is defined by (pi, ei), where pi represents the period of

the task and ei its worst-case execution time. A task τi releases a

Fig. 1. An example of compositional real-time scheduling framework.

new job every pi time units. Therefore, the jth job of task τi denoted

by Ji,j should be finished by the next job’s release time. The periodic

task model is very common in many cyber-physical systems including

avionics (Easwaran et al., 2009) and automotive systems (Asberg et al.,

2009).

Each component of the framework is abstracted through its inter-

face and seeing by its upper-layer component as a single real-time

task. This abstraction allows the upper-layer component to sched-

ule its child component without any consideration of their internal

real-time requirements. The periodic interface model considered here

reduces a component into a new periodic task I(P, E), where P is the

period of the task and E its execution time. In Fig. 1 for example, the

two tasks of component C1, scheduled with Earliest Deadline First

(EDF), are abstracted into a new periodic task I1(5, 2). Similarly, com-

ponent C2, which is scheduled using the Rate Monotonic (RM) policy, is

converted into I2(10, 2). The upper-layer component C0 then only fo-

cuses on efficiently scheduling these two component tasks, providing

them with the appropriate resource supply.

A resource model in a compositional real-time scheduling frame-

work specifies the minimum amount of resource to be allocated to

a component for it to be schedulable. For this work, we consider the

periodic resource model proposed by Shin and Lee (2003). A periodic

resource model �(�,�)guarantees that a resource amount of � time

units is supplied every � time units to a component. For example, the

resource model �1(5, 2) of component C1 in Fig. 1 guarantees that 2

time units are provided to the component every 5 time units. Simi-

larly, a computational time of 2 units is given to C2 at every 10 time

units.

2.2. Power model

In this paper, we consider a compositional real-time scheduling

framework running on a single processor system. We assume the

processor to be equipped with dynamic voltage scaling (DVS) mech-

anism allowing it to continuously adjust its operating frequency f

between a minimum frequency level fmin and a maximum frequency

level fmax (fmin ≤ f ≤ fmax). We then define the speed level s of a pro-

cessor as the normalized operating frequency f with respect to the

maximum frequency fmax, i.e. s = f/fmax. Thus, without loss of gener-

ality, throughout this paper, we will only refer to the processor speed

level s which is well defined between a minimum value smin and a

maximum value smax, 0 ≤ smin ≤ smax = 1. In this work, the processor

speed adjustment occurs at resource release time or during context

switching.

Now, let us consider an application with its execution time given

by t when the processor is running at its maximum frequency fmax, i.e.

at maximum speed level smax = 1. Let us assume that the processor is

scaled to run at a frequency level f (0 < f ≤ fmax) which corresponds



Download English Version:

https://daneshyari.com/en/article/459471

Download Persian Version:

https://daneshyari.com/article/459471

Daneshyari.com

https://daneshyari.com/en/article/459471
https://daneshyari.com/article/459471
https://daneshyari.com

