
The Journal of Systems and Software 102 (2015) 72–87

Contents lists available at ScienceDirect

The Journal of Systems and Software

journal homepage: www.elsevier.com/locate/jss

An insight into license tools for open source software systems

Georgia M. Kapitsaki a, Nikolaos D. Tselikas b,∗, Ioannis E. Foukarakis b

a Department of Computer Science, University of Cyprus, 75 Kallipoleos Street, P.O. Box 20537, CY-1678 Nicosia, Cyprus
b Communication Networks and Applications Laboratory, Department of Informatics and Telecommunications, University of Peloponnese, End of Karaiskaki

Street, 22 100 Tripolis, Greece

a r t i c l e i n f o

Article history:

Received 11 December 2013

Revised 21 November 2014

Accepted 28 December 2014

Available online 30 December 2014

Keywords:

Free/Libre/Open Source Software

License identification

License compatibility

a b s t r a c t

Free/Libre/Open Source Software (FLOSS) has gained a lot of attention lately allowing organizations to incor-

porate third party source code into their implementations. When open source software libraries are used,

software resources may be linked directly or indirectly with multiple open source licenses giving rise to

potential license incompatibilities. Adequate support in license use is vital in order to avoid such violations

and address how diverse licenses should be handled. In the current work we investigate software licensing

giving a critical and comparative overview of existing assistive approaches and tools. These approaches are

centered on three main categories: license information identification from source code and binaries, software

metadata stored in code repositories, and license modeling and associated reasoning actions. We also give a

formalization of the license compatibility problem and demonstrate the role of existing approaches in license

use decisions.

© 2014 Elsevier Inc. All rights reserved.

1. Introduction

Free/Libre/Open Source Software (FLOSS) or free and open-source

software (FOSS) (Androutsellis-Theotokis et al., 2011) has assisted in

the spread of emerging technologies, allowing users to utilize freely

publicly available software and developers to incorporate third party

source code into their implementations. Individual and already tested

libraries are often used as building blocks for larger software systems,

offering reusable functionality and providing the means for faster

time-to-release. Various open source communities consisting of ac-

tive developers and bug fixers for specific projects can be encountered

ranging from small to very large groups depending on the popularity

of the software system. The terms under which the software has be-

come available and is provided for use are depicted in the correspond-

ing licenses (Lawrence, 2004). Licensing is a legal issue, since software

is highly linked with intellectual property. In general, licenses “pro-

vide access rules that allow other people to go through the legal firewall

and use the intellectual property” (Lindberg, 2008). In open source soft-

ware, licenses express how the software can be used further by the

potential users differentiating between user rights and obligations.

The strong importance of license use is also reflected in the research

community that has shown a rising interest in open source software

∗ Corresponding author. Tel.: +30 2710 372216; fax: +30 2710 372160.

E-mail addresses: gkapi@cs.ucy.ac.cy (G.M. Kapitsaki), ntsel@uop.gr

(N.D. Tselikas), ifouk@uop.gr (I.E. Foukarakis).

licensing in the last years (Alspaugh et al., 2009; Hemel et al., 2011;

Sojer and Henkel, 2011).

As the number of components in software systems increases, so

does the complexity of deciding which license(s) can be applied on

the final system, or of checking if there are any incompatibilities

among the terms defined in the licenses adopted in the different

software components. Especially during the development phase, it is

usual that software engineers include additional – and often redun-

dant – dependencies in their code light-hearted, without checking

possible licensing violations (Sojer and Henkel, 2011). In an enter-

prise world, where commercial software is often distributed against

high prices, such an issue cannot be treated light-hearted (Douglas,

2011). Lots of different licenses have appeared containing various

bounds and conditions on the software use: GNU General Public Li-

cense (GPL), Apache License, MIT License, to name a few. Things are

getting even more complex because each license may have multiple

versions and each version is independent from a legal point of view,

and if we consider other kind of licenses that are critical to under-

standing collaborations in FLOSS projects, i.e., individual Contributor

License Agreements (CLAs). Without copyright assignments or CLAs,

changing a software license requires the consent of every contributor

to that system (Jensen and Scacchi, 2011). An important parameter,

but out of the scope of this article, is that the legal interpretation of

FLOSS licenses may differ among countries and especially between

the United States and European courts as can be seen from several

cases on FLOSS software copyright and/or licensing issues (Peeters,

2007; Hassin, 2007).

http://dx.doi.org/10.1016/j.jss.2014.12.050

0164-1212/© 2014 Elsevier Inc. All rights reserved.

http://dx.doi.org/10.1016/j.jss.2014.12.050
http://www.ScienceDirect.com
http://www.elsevier.com/locate/jss
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jss.2014.12.050&domain=pdf
mailto:gkapi@cs.ucy.ac.cy
mailto:ntsel@uop.gr
mailto:ntsel@uop.gr
http://dx.doi.org/10.1016/j.jss.2014.12.050


G.M. Kapitsaki et al. / The Journal of Systems and Software 102 (2015) 72–87 73

Table 1

Open source license types.

License type Examples

Permissive: MIT
software may be distributed under any license BSD (Berkeley Software Distribution)

Apache v2.0

Weak copyleft: GNU LGPL (Lesser General Public License)

if original software using this license is modified derivative work needs to carry the same license; otherwise derivative

work may be distributed under any license

MPL (Mozilla Public License)

Strong copyleft: GNU GPL (General Public License) v2, v3

any modification to software using this license needs to be distributed under the same license OSL (Open Software License)

Finding the right license(s) associated with software source code,

keeping these licenses up to date, choosing the appropriate license for

each new software product, updating this choice, when and if neces-

sary, are important issues for any open source user and for software

engineers employing open source software for various purposes. In

the current work we address these issues by giving an overview of

available licensing tools. These are mainly found in license classifi-

cation, identification and compatibility approaches. Additionally, a

critical comparison on the existing tools is performed based on a set

of metrics that we introduce. The contribution of our work lies in the

introduction of these metrics for license assistive tools as well as in

the overview and comparison of existing tools along with an approach

toward the formalization of the license compatibilities problem. The

main aim of this work is to provide a useful reference on FLOSS com-

patibilities for software researchers and practitioners, formalize the

available areas and approaches and point out existing gaps and needs

for further research.

The rest of this paper is structured as follows: Section 2 introduces

license compatibility and performs a classification of the existing ap-

proaches and tools. Each category is presented in detail with repre-

sentative approaches in Sections 3 through 5 containing methods for

license information identification, license information presented in

online repositories of source code and license modeling along with

techniques for reasoning actions on license compatibility. A compar-

ison of the features offered in each tool category is given in Section 7

based on the metrics introduced in Section 6. Finally, Section 8 con-

cludes the paper providing a short reference to future advancements.

2. License compatibility and tools

2.1. License classification and violations

Open source licenses can be characterized either as permissive

(called also academic) or copyleft (called also reciprocal). The latter

category can be further divided into weakly protective and strongly

protective. This main distinction is depicted in Table 1 along with

some representative examples. Permissive licenses have minimal re-

quirements. Open source software with a permissive license can be

distributed as part of a larger product under almost any other license,

while the only requirement is the attribution to the original authors.

The distinction between strong and weak copyleft lies in the per-

missions given in a derivative work, i.e., work adapted from the origi-

nally copyrighted item (Lindberg, 2008). Any derivative work of strong

copyleft-licensed software needs to be distributed with the same li-

cense. On the other hand, if the software used carries a weak copyleft

license, the derivative work can be distributed under another license

as long as it has not modified the weak copyleft-licensed software

used. Some licenses may make a distinction on the type of linking

to the original software, although generally weak copyleft permits

both dynamic and static linking of the derivative work to the original

software. Further information on the characteristics of each license

category can be found in a relevant publication (Kechagia et al., 2010).

Strong and weak copyleft should not be confused with full or partial

copyleft, which refers to the part of the copyleft-licensed software

that must be made available under the same copyleft license, when

modified or distributed: in full copyleft this applies to all parts of the

software, whereas in partial some modifications may be distributed

under a different license.

Formal lists of licenses can be found in the Open Source Initiative

(OSI) and the Free Software Foundation (FSF). OSI has approved till

this point 70 licenses including one that was deprecated by its author,

whereas FSF lists 88 licenses. Placing a license into a specific category

is not straightforward. Especially the distinction between permissive

or weak copyleft, and between weak or strong copyleft, is not al-

ways clear. This depends on the specific terms in the license text, but

also on whether there is a differentiation between static and dynamic

use of the code in the license. Hence, different organizations, such as

GNU2 or the institute for legal issues regarding free and open source

software ifrOSS,3 may place the same license into different categories

or even disagree on whether a license can be regarded a free license.

Table 2 includes a categorization of most OSI-approved licenses ex-

cluding licenses with no obvious consensus on their category and li-

censes that are rarely used (e.g., Naumen Public License, Open Group

Test Suite License).

As indicated, there are cases where the license classification is not

straightforward. For instance, EPLv1.0 (Eclipse Public License) allows

using the object form of an original work under EPL in a product to

be licensed under a commercial license provided that the EPL portion

conforms to the terms of the EPL. However, the license is considered

as strong copyleft by ifrOSS, since the above is not allowed when

the source code of the EPL licensed work is used directly. Another

case is the CPAL license (Common Public Attribution License) derived

from MPL (Mozilla Public License). Although its connection with MPL

gives an indication for a weak copyleft character, the license term

that states that the copyleft comes into effect when software with

even unmodified version of the CPAL-licensed software is distributed

over a network brings this license closer to the strong copyleft AGPL

license (Affero General Public License).

The variety of open source licenses makes it difficult for organiza-

tions to cope with incompatibilities that might exist due to the use

of software libraries based on different licenses. License A is consid-

ered one-way ‘compatible’ with license B, if software that contains

components from both licenses can be licensed under license B. The

term ‘one-way’ is used to highlight that license A is compatible with

license B, but the reverse case (i.e., license B is compatible with license

A) is not assured. As shown later in Section 5, the reverse case could

be feasible only if both licenses A and B belong to the same category,

while it is never true if license A is a permissive license and license B is

a copyleft one. In other words we could say that license A is univocally

2 http://gnu.ist.utl.pt/licenses/license-list.html.
3 http://www.ifross.org/en/license-center#term-222.

http://gnu.ist.utl.pt/licenses/license-list.html
http://www.ifross.org/en/license-center\043term-222


Download English Version:

https://daneshyari.com/en/article/459472

Download Persian Version:

https://daneshyari.com/article/459472

Daneshyari.com

https://daneshyari.com/en/article/459472
https://daneshyari.com/article/459472
https://daneshyari.com

