
The Journal of Systems and Software 102 (2015) 88–108

Contents lists available at ScienceDirect

The Journal of Systems and Software

journal homepage: www.elsevier.com/locate/jss

Progressive Outcomes: A framework for maturing in agile software

development

Rafaela Mantovani Fontana a,b,∗, Victor Meyer Jr. a, Sheila Reinehr a, Andreia Malucelli a

a Pontifical Catholic University of Paraná (PUCPR), R. Imaculada Conceição, 1155, Prado Velho, 80215-901 Curitiba, PR, Brazil
b Federal University of Paraná (UFPR), R. Dr. Alcides Vieira Arcoverde, 1225, Jd. das Américas, 81520-260 Curitiba, PR, Brazil

a r t i c l e i n f o

Article history:

Received 25 August 2014

Revised 2 December 2014

Accepted 15 December 2014

Available online 22 December 2014

Keywords:

Maturity

Agile software development

Software process improvement

Complex adaptive systems

Ambidexterity

a b s t r a c t

Maturity models are used to guide improvements in the software engineering field and a number of maturity

models for agile methods have been proposed in the last years. These models differ in their underlying

structure prescribing different possible paths to maturity in agile software development, neglecting the

fact that agile teams struggle to follow prescribed processes and practices. Our objective, therefore, was to

empirically investigate how agile teams evolve to maturity, as a means to conceive a theory for agile software

development evolvement that considers agile teams nature. The complex adaptive systems theory was used

as a lens for analysis and four case studies were conducted to collect qualitative and quantitative data. As a

result, we propose the Progressive Outcomes framework to describe the agile software development maturing

process. It is a framework in which people have the central role, ambidexterity is a key ability to maturity,

and improvement is guided by outcomes agile teams pursue, instead of prescribed practices.

© 2014 Elsevier Inc. All rights reserved.

1. Introduction

Maturity models are tools to describe how an element evolves.

This element, which may be a person, an object, or a social system,

may use the description provided by maturity models to assess its

own situation and find guidance to improve in a specific focus area

(Kohlegger et al., 2009). In the software engineering field, process

improvement is based mainly on the guidelines given by the Capabil-

ity Maturity Model Integration for Development –CMMI-DEV (CMMI

Product Team, 2010) and the international standard ISO/IEC 15504

(ISO/IEC, 2004). Both CMMI-DEV and ISO/IEC 15504 share the un-

derlying assumption that organizational capabilities must be codified

in processes that are previously planned and designed (Maier et al.,

2012). The improvement for the organization comes from the def-

inition, institutionalization and quantitative management of these

processes (CMMI Product Team, 2010).

A number of agile software development teams have been im-

plementing these process improvement initiatives (Al-Tarawneh

et al., 2011; Anderson, 2005; Baker, 2006; Caffery et al., 2008; Cohan

and Glazer, 2009; Jakobsen and Johnson, 2008; Lina and Dan, 2012;

Lukasiewicz and Miler, 2012; Spoelstra et al., 2011; Sutherland et al.,

2007; Tuan and Thang, 2013). The benefits of such initiatives have

∗ Corresponding author at: Federal University of Paraná (UFPR), R. Dr. Alcides Vieira

Arcoverde, 1225, Jd. das Américas, 81520-260 Curitiba, PR, Brazil. Tel.: +55 4133614904.

E-mail addresses: rafaela.fontana@ufpr.br (R.M. Fontana), victormeyerjr@

gmail.com (V. Meyer), sheila.reinehr@pucpr.br (S. Reinehr), malu@ppgia.pucpr.br

(A. Malucelli).

been recognized as a “magic potion”, as they provide a powerful com-

bination of adaptability and predictability (Sutherland et al., 2007).

However, if teams are meant to keep agile in the highest maturity

levels, the improvement path cannot be based on current established

maturity models. The increasing processes definition hinders sustain-

ing agility (Lukasiewicz and Miler, 2012; Paulk, 2001).

If agile methods place people and interaction over processes and

tools (Beck et al., 2001; Conboy et al., 2011), the improvement road

map for these methods should not be based on processes definition

(Fontana et al., 2014). There are, for this reason, a number of agile ma-

turity models proposed in the literature (Leppänen, 2013; Ozcan-Top

and Demirörs, 2013; Schweigert et al., 2012). They are built over agile

values and the improvement paths they suggest consider sustaining

agility in the highest maturity levels. Two issues linger, though: the

first is that they prescribe the practices the team should implement,

even agile teams, which consider their work as a highly context-

specific job to be prescribed (Fontana et al., 2014; Kettunen, 2012;

Schweigert et al., 2012; Sidky et al., 2007); and the second is that the

models still differ in their proposals, which indicates that the path to

maturing in agile software development has not been uncovered yet.

These two issues thus, motivated this study. Our objective was

to identify how agile software development teams evolve to matu-

rity. We conducted an empirical research, through a multiple-case

study approach, that identified how real agile teams evolve their

practices and mature over time. The findings interest researchers,

as they innovate in the underlying theory for a maturity model; and

practitioners, as they provide practical guidelines for improving agile

methods.

http://dx.doi.org/10.1016/j.jss.2014.12.032

0164-1212/© 2014 Elsevier Inc. All rights reserved.

http://dx.doi.org/10.1016/j.jss.2014.12.032
http://www.ScienceDirect.com
http://www.elsevier.com/locate/jss
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jss.2014.12.032&domain=pdf
mailto:rafaela.fontana@ufpr.br
mailto:victormeyerjr@gmail.com
mailto:victormeyerjr@gmail.com
mailto:victormeyerjr@gmail.com
http://dx.doi.org/10.1016/j.jss.2014.12.032


R.M. Fontana et al. / The Journal of Systems and Software 102 (2015) 88–108 89

This paper is organized as follows: Section 2 outlines related work;

Section 3 discusses our theoretical foundation and the theoretical

framework we used for data analysis; and Section 4 presents the re-

search structure. The results of the multiple-case study are presented

in Section 5 and, finally, the findings are discussed and concluded in

Sections 6 and 7, respectively.

2. Related work

Improvement paths in software engineering are currently defined

by the guidelines given by CMMI-DEV and the international stan-

dard ISO/IEC 15504. The standard defines that software process im-

provement is accomplished through implementation of processes

that address software acquisition, supply, engineering, operation,

management, improvement, resources and infrastructure, reuse, con-

figuration control, quality assurance and product quality (ISO/IEC,

2004).

Besides the incremental implementation of such processes, the ca-

pability to execute the processes should follow an evolutionary path.

In ISO/IEC 15504 this capability is defined in terms of six levels: in-

complete process, performed process, managed process, established

process, predictable process and, lastly, optimizing process (ISO/IEC,

2004).

CMMI-DEV defines similar capability levels and, in addition, de-

scribes maturity levels to be followed for process improvement

(CMMI Product Team, 2010). These levels are defined in terms of

a set of processes that should be implemented and by the capabil-

ity in which these processes should be performed. The first matu-

rity level is named Initial, as processes here are usually ad hoc and

chaotic; the second is called Managed, characterized by processes

that lead projects to be performed and managed according to their

documented plans. Next, comes third stage, Defined, in which pro-

cesses are well characterized, understood and standardized in the

organization. In fourth stage, “the organization and projects establish

quantitative objectives for quality and process performance and use

them as criteria in managing projects” (CMMI Product Team, 2010,

p. 28) and for this reason it is called Quantitatively Managed. The

highest maturity level is the Optimizing, in which improvement of

the processes is continuous and based on a quantitative understand-

ing of objectives and needs.

In the same path of CMMI two other models were created by

Watts Humphrey: Personal Software Process (PSP) and Team Soft-

ware Process (TSP). The first focuses on software individual discipline

and the latter focuses on a disciplined group formed by PSP practi-

tioners (Humphrey, 1995). The main difficulty that one faces when

trying to use PSP is the amount of self-discipline that is required to

fully apply the method. The first challenge is the need to record every

single activity that the software engineer performs, the time that was

spent in the activity and all the breaks taken during the work. This ap-

proach creates a bureaucracy in daily work that does not match agile

approaches emphasis on people and interaction. PSP is also based on a

seven-step roadmap that leads developer from a complete immature

state (PSP0 – Baseline Personal Process) to a full mature state (PSP3 –

Cyclic Personal Process). Similarly, TSP is a framework to be used

in teams composed by PSP trained members (Humphrey, 2010). The

model is based on an eight-step cycle: launch, strategy, plan, require-

ments, design, implementation, test and postmortem. The difficulty

with TSP is the same of the PSP: the bureaucratic and prescriptive

way to evolve work processes.

In the field of agile software development, two main lines of re-

search have been studying maturity. The first focuses on adapting

agile practices and principles to fit current software maturity models,

such as CMMI-DEV. The second focuses on creating maturity paths

related to agile software development values.

Since researchers and practitioners consider agile methods and

software process improvement models as means to get the best from

software development, there has been an increasing interest in com-

bining both approaches. Starting with Mark Paulk explaining how Ex-

treme Programming could be complementary to CMM (Paulk, 2001),

a number of studies have either reported how companies have com-

bined agile methods to CMMI-DEV requirements, or proposed new

approaches to perform this combination (Al-Tarawneh et al., 2011;

Anderson, 2005; Baker, 2006; Caffery et al., 2008; Cohan and Glazer,

2009; Jakobsen and Johnson, 2008; Lina and Dan, 2012; Lukasiewicz

and Miler, 2012; Sutherland et al., 2007; Spoelstra et al., 2011; Tuan

and Thang, 2013).

All these approaches result in adapting agile methods to fit as-

sessment requirements in CMMI-DEV. They also accept that agile

methods do not fit higher maturity levels, as the quantitative control

of processes does not apply to agility (Lukasiewicz and Miler, 2012;

Paulk, 2001). However, these initiatives recognize the value of hav-

ing a combination of agility and disciplined processes (Boehm and

Turner, 2004).

The second group of studies considers maturity in agile software

development by keeping its focus on agility. The first agile maturity

model we found published in the literature was the one by Nawrocki

et al. (2001). They present a 4-level maturity model for XP (Extreme

Programming). The authors’ motivation was to identify if a specific

organization is using XP or not. Typically, there are assessment prob-

lems because XP practices are not fully applied all the time. Thus,

they say that a maturity model could be used as a reference point. For

them, the model has to be hierarchical and identify practices for each

level, such as CMMI-DEV.

The proposed model is called XPMM (eXtreme Programming Ma-

turity Model) and was created based on intersections between XP

and CMMI-DEV. The first level, named “Not compliant at all” means

that the team applies no or a few XP practices. The second, “Initial”,

focuses on project teams and defines two process areas: Customer

Relationship Management and Product Quality Assurance. The third,

“Advanced” is focused on coding and, thus, the only process area is

Pair Programming. The last level, called “Mature”, has process areas

related to the satisfaction of customers and developers. Here, the only

process area is Project Performance. To be assigned to a specific level,

the team has to follow the practices in this level and in the previous

ones.

The authors assume that assessment should not be based on rich

process documentation. They also state that many XP practices (e.g.

simplicity, no functionality is added early) are difficult to assess. Then,

they propose conversation and observation as assessment methods.

Another proposal for XP maturity model is the one presented by Lui

and Chan (2005). They report a roadmap to aid the adoption of XP in

Chinese inexperienced teams. They have analyzed the dependencies

among XP practices and mapped them into a matrix. With the help

of a visual data mining tool, they identified the ideal sequence for

practices implementation.

They arrived at a four-stage XP implementation road map. In

stage 1, the team should implement testing, simple design, refac-

toring and coding standard. In stage 2, the team should focus on

continuous integration. In stage 3, the team should implement pair

programming and collective ownership and, finally, in stage 4, the re-

maining XP practices would be adopted: metaphor, 40-h week, small

release, on-site customer and planning game.

The model presented by Packlick (2007) is based on a single expe-

rience in Sabre Airline Solutions. He describes a different approach,

based on the observation of real teams. The proposal is to use a goal-

oriented approach because the author has observed that teams got

more motivated to find out their own ways to get the job done. The

AGILE Roadmap comprises five maturity levels that represent differ-

ent learning stages an agile team should accomplish.

The goals are related to the AGILE acronym: Acceptance criteria;

Green-bar tests and builds; Iterative planning; Learning and adapting;

and, Engineering excellence. Each goal is detailed as a user’s story



Download	English	Version:

https://daneshyari.com/en/article/459473

Download	Persian	Version:

https://daneshyari.com/article/459473

Daneshyari.com

https://daneshyari.com/en/article/459473
https://daneshyari.com/article/459473
https://daneshyari.com/

