
The Journal of Systems and Software 102 (2015) 109–122

Contents lists available at ScienceDirect

The Journal of Systems and Software

journal homepage: www.elsevier.com/locate/jss

A time-based approach to automatic bug report assignment

Ramin Shokripour a,∗, John Anvik b, Zarinah M. Kasirun a, Sima Zamani a

a Faculty of Computer Science & Information Technology, University of Malaya, Kuala Lumpur, Malaysia
b Department of Computer Science, Central Washington University, Ellensburg, WA 98926, USA

a r t i c l e i n f o

Article history:

Received 17 April 2014

Revised 25 December 2014

Accepted 26 December 2014

Available online 31 December 2014

Keywords:

Term weighting technique

time metadata

Tf-idf Technique

a b s t r a c t

Bug assignment is one of the important activities in bug triaging that aims to assign bugs to the appropriate

developers for fixing. Many recommended automatic bug assignment approaches are based on text anal-

ysis methods such as machine learning and information retrieval methods. Most of these approaches use

term-weighting techniques, such as term frequency-inverse document frequency (tf-idf), to determine the

value of terms. However, the existing term-weighting techniques only deal with frequency of terms without

considering the metadata associated with the terms that exist in software repositories. This paper aims to im-

prove automatic bug assignment by using time-metadata in tf-idf (Time-tf-idf). In the Time-tf-idf technique,

the recency of using the term by the developer is considered in determining the values of the developer

expertise. An evaluation of the recommended automatic bug assignment approach that uses Time-tf-idf,

called ABA-Time-tf-idf, was conducted on three open-source projects. The evaluation shows accuracy and

mean reciprocal rank (MRR) improvements of up to 11.8% and 8.94%, respectively, in comparison to the use

of tf-idf. Moreover, the ABA-Time-tf-idf approach outperforms the accuracy and MRR of commonly used ap-

proaches in automatic bug assignment by up to 45.52% and 55.54%, respectively. Consequently, consideration

of time-metadata in term weighting reasonably leads to improvements in automatic bug assignment.

© 2014 Elsevier Inc. All rights reserved.

1. Introduction

Bug triaging, an important process in software maintenance, has

a significant effect on the quality of software projects (Jeong et al.,

2009). In this process, a project member called the triager, who may

also be one of the developers, investigates the validity of the reported

bugs. Valid bugs are then assigned to the most appropriate devel-

oper(s) for fixing. The process of assigning the bugs to developers

is called bug assignment. Traditional manual bug triaging is time-

consuming and tedious. More importantly, bug triage imposes extra

costs on projects (Anvik and Murphy, 2011). Accordingly, various re-

search has sought to improve this process by using (semi)automatic

bug assignment processes (e.g. Anvik and Murphy, 2011; Kagdi et al.,

2012; Servant and Jones, 2012; Tamrawi et al., 2011).

Machine learning (ML) methods (Ahsan et al., 2009; Anvik and

Murphy, 2011; Bhattacharya et al., 2012; Cubranic and Murphy, 2004;

Nasim et al., 2011; Tamrawi et al., 2011) and information retrieval (IR)

methods (Kagdi et al., 2012; Linares-Vasquez et al., 2012; Lucca, 2002;

Matter et al., 2009; Moin and Neumann, 2012; Nagwani and Verma,

2012; Zhang and Lee, 2013) have been widely used by researchers in

bug assignment approaches. These approaches use textual informa-

∗ Corresponding author. Tel.: +60 17372 4849.

E-mail address: rshokripour@gmail.com (R. Shokripour).

tion which was extracted from software repositories, to assign de-

velopers to new bugs. Although recent non-text based approaches

are emerging to address the limitations of text analytic methods

(Panichella et al., 2013), text-based methods are still the most-used

and effective techniques in this area (Sun et al., 2014).

Term similarities between a new bug report and information re-

sources are used for establishing a relationship between the new bug

report and activities of the developers. The importance of each term in

establishing this relationship is determined using a term-weighting

technique. The most commonly used term-weighting technique for

automatic bug assignment is term frequency-inverse document fre-

quency (tf-idf) (Cavalcanti et al., 2014). A significant difference be-

tween the textual resources of software projects and documents in

other areas (e.g. newspapers) is the existence of metadata, specifically

the time of using the term.

This paper presents ABA-Time-tf-idf, an automatic bug assignment

approach using the Time-tf-idf term weighting technique. ABA-Time-

tf-idf improves the accuracy of a bug assignment approach. Compared

to other approaches, this new approach is lightweight, as it only in-

cludes a time-based term weighting technique and a simple ranking

method to rank developers based on their expertise. To the best of

our knowledge, this approach is unique.

An evaluation against other commonly used bug assignment ap-

proaches across three different datasets shows that the ABA-Time-

tf-idf approach obtains better performance than the comparable ML,

http://dx.doi.org/10.1016/j.jss.2014.12.049

0164-1212/© 2014 Elsevier Inc. All rights reserved.

http://dx.doi.org/10.1016/j.jss.2014.12.049
http://www.ScienceDirect.com
http://www.elsevier.com/locate/jss
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jss.2014.12.049&domain=pdf
mailto:rshokripour@gmail.com
http://dx.doi.org/10.1016/j.jss.2014.12.049


110 R. Shokripour et al. / The Journal of Systems and Software 102 (2015) 109–122

IR, and ABA-tf-idf approaches. ABA-Time-tf-idf outperforms the SVM,

Naive Bayes, VSM and SUM approaches by as much as 45%, 28%, 11%

and 19%, respectively. The new approach also improves on the mean

reciprocal rank (MRR) by up to 55.54%, 30.88%, 15.37% and 25.03%.

Finally, ABA-Time-tf-idf also outperforms the accuracy and MRR of

ABA-tf-idf by up to 11.8% and 8.94%.

The rest of this paper proceeds as follows. First, the motivation

of this research is presented in Section 2. Next, the details of the

proposed method are described in Section 3. The empirical evaluation

of the method is presented in Section 4 and the evaluation results and

analysis are presented and discussed in Section 5. Section 6 discusses

the threats to validity. Then, in Section 7, the most related works in

bug assignment are investigated. Finally, the paper is concluded in

Section 8.

2. Motivation

Bug assignment approaches which use text analysis techniques

use the term similarity between the new bug report and software

information resources, such as bug repository and source code, to

establish a relationship between the new bug report and developer

expertise. Recently, researchers have augmented the text analysis

portion of such approaches with metadata. Examples of the use of

metadata include the product and component of the bug (Xia et al.,

2013), bug tossing behavior (Bhattacharya et al., 2012; Jeong et al.,

2009), developer communication social networks (Wu et al., 2011;

Zhang and Lee, 2013), and source code locations of the bug (Kagdi

et al., 2012; Linares-Vasquez et al., 2012; Servant and Jones, 2012).

This means that the accuracy of these approaches depends on the

accuracy of the text analysis technique. Therefore, improving the ac-

curacy of the text analysis technique could result in improving the

accuracy of the bug assignment approach. This paper presents a new

bug assignment approach that uses the time when the terms were

used by the developer in the term weighting step of the text analysis

process.

Other approaches have also used time-metadata, such as the time

spent fixing previous bugs (Nguyen et al., 2012) and the time distance

between the last activity of developer and the reporting date of the

new bug (Bhattacharya et al., 2012; Kagdi et al., 2012), to improve the

results of the text analysis methods. However, time-metadata have

been used by the other techniques, we used time-metadata to deter-

mine the weight of the terms used by the developers. The proposed

term weighting technique in this paper is referred to as time-based

tf-idf (Time-tf-idf). An advantage of this technique is that it removes

the need for activity thresholding (Anvik and Murphy, 2011; Matter

et al., 2009), whereby developers who have been inactive for more

than the threshold are removed from the developer list. Such pruning

of the data may result in the loss of useful information. Time-tf-idf

addresses this issue by giving lower weights to the earlier activities,

but not removing them. In other words, early activities which will

have less effect in determining the expertise are given lower weights

than recent activities, as recent activities will have a greater effect in

determining developer expertise. This is due to the use of the time

difference between the terms used in each activity and those used in

a new bug report. The larger the time difference, the smaller the term

weight for the terms in that activity.

Moreover, projects have different goals or address different re-

quirements at different points in time (Gómez et al., 2009), and the

term weights should reflect this situation. For example, a developer

that worked on a feature of the project five months ago has more po-

tential to resolve a new bug related to this feature than the developer

who worked on the same feature two years ago. Therefore, the last

time that a developer used a keyword associated with that feature is a

suitable parameter for assessing the developer’s current expertise rel-

ative to the feature. Furthermore, developers change their expertise,

such as moving from one component or product to another compo-

nent or product. Accordingly, the vocabularies that the developers use

also change to reflect changes in their expertise. Considering the time

at which a developer uses terms may therefore improve developer

recommendation accuracy.

3. Proposed approach

The proposed approach in this research seeks to improve auto-

matic bug assignment by using the terms’ time-metadata as an effec-

tive parameter in weighting the terms in the tf-idf term-weighting

technique (time-based tf-idf). The tf-idf technique only deals

with the frequency of the terms in the document and corpus to deter-

mine their value. However, time-based tf-idf (Time-tf-idf) also con-

siders the time of using the term in the project in determining the

weight. Fig. 1 shows an overview of the recommended automatic

bug assignment approach (ABA-Time-tf-idf approach), that uses the

Time-tf-idf term weighting technique. The ABA-Time-tf-idf approach

has three stages: corpus creation, expertise determination, and de-

veloper recommendation.The details of these steps are described in

the following sections.

3.1. Corpus creation

Regarding the usage of the time-metadata in the proposed ap-

proach, the corpus creation step is different from the corresponding

step in the commonly used text analysis methods. In ABA-Time-tf-idf,

the required data is collected from the version control system (VCS),

a software repository for managing changes to source code and other

relevant project documents. From the source code, the identifiers

are extracted and used to establish the relationship between a new

bug report and developer activities in the project. Therefore, each

identifier in the project’s source code is associated with a developer

and each identifier-developer relationship represents a developer

activity.

Source code identifiers are used to name the entities of the source

code (such as files, classes, and methods). In this study, the names of

classes, methods, fields, and parameters of the methods are extracted,

as they have been found to contain more useful and less noisy data.

Identifiers are often the concatenation of a set of terms used to indi-

cate the functionality of the source code entity (Abebe and Tonella,

2010). Therefore, the extracted identifiers are also decomposed into

their components using the identifier tokenization method recom-

mended by Butler et al. (2011). Such an extracted identifier is here-

after referred to as a “decomposed identifier”. The method of Butler

et al. first decomposes the identifiers using common rules of term de-

composition. Examples of such rules are decomposing based on the

internal capitalization and decomposing based on separator charac-

ters. In addition, their approach improves tokenization by increasing

the accuracy of tokenizing single identifiers and cases where identi-

fiers contain digits. This is done by using a set of heuristics and other

methods, such as word recognition and a recursive algorithm for find-

ing the project’s vocabulary in the identifiers. In this study, both the

complete and decomposed identifiers are used in representing devel-

oper activity.

After extracting the identifiers, they need to be associated with

the corresponding metadata. For each extracted identifier, the name

of the developer who is associated with the identifier and the time

stamp of the commit into the source code repository are extracted for

use in term weighting. The commit time is used as the creation time

of the identifier. Consequently, it is possible that a term which is used

in more than one identifier of a file has various times associated with

it in the generated dataset.

The results of Capobianco et al. (2013) and our recent investi-

gation (Zamani et al., 2014) demonstrate that only using the noun

terms of the decomposed identifiers significantly reduces the vol-

ume of the dataset and also the noisy data without decreasing the



Download English Version:

https://daneshyari.com/en/article/459474

Download Persian Version:

https://daneshyari.com/article/459474

Daneshyari.com

https://daneshyari.com/en/article/459474
https://daneshyari.com/article/459474
https://daneshyari.com

