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1. Introduction

The estimations of exponential and related sums are of great importance in number theory. A more
general problem is to estimate an upper bound for the quantity

> ane(f(n))’, (11)

n<N
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where a,’s are certain complex numbers and f(n) is a nice function. When a, = A(n) (the von Man-
goldt function), the estimation of the sum S in question essentially turns out to be estimating a
certain exponential sum over primes, more precisely,

> A(n)E(f(n))‘ =" (ogple(f () + O(N?). (12)

n<N p<N

Throughout the paper, f(x) is a real valued polynomial of degree k (> 2) with the leading coef-
ficient «. There are several interesting results available in the literature. For example, G. Harman
proved the following theorem (see Theorem 1) in [4].

Theorem A. Suppose € > 0 is given. Let y; (k) = 4. Suppose that there are integers a, q such that

1

lge —a| <q~ with(a,q)=1.

Then we have

r1(k)
> " ogpe(f(p) < NW(% + L, ) :

T vk
p<N Nz N

For an application of Theorem A with large g, we refer to [1]. A. Ghosh considered some spe-
cial cases of the above sum when f(p) = ap® or ap? (see [3]). It should be mentioned here that
K. Kawada and T.D. Wooley have studied estimations of sums of the kind } p,_op e(ap®) with
some restrictions on « in connection with the Waring-Goldbach problem for fourth and fifth powers
(see [7] and also [6]). The above estimates are in general good whenever the degree of f(x) is small.
On the other hand, if k is large, Vinogradov’s (see [20]) result shows that in place of y; (k) in Theo-
rem A, we can have (25k%(2 + logk))~!. If f is a monomial and « is rational, then Theorem 2 of [14]
shows that, Theorem A can be substantially improved to

ool—
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apk 772 €Nt 1 _
Y (ogple( — ) < (ogN)"q(N2q> + Nq
p<N 1

) (1.3)

(see also the related works [2,5,15,16,18,19]).

Since our Main Theorem below depends on the type of «, let us recall this notion (see p. 121 of [9]
for more details). Let ¥ be a non-decreasing positive function that is defined at least for all positive
integers. The irrational number « is said to be of type < v if qlqx| > ﬁ holds for all positive
integers q. If ¥ is a constant function, then an irrational o of type < 1 is also called of constant type.
Let 1y be a positive real number or infinity. The irrational number « is said to be of type 1 if nq is
the supremum of all §; for which

liminfg® ||qo| =0,
q—00

where g runs through the positive integers. The relationship between these two definitions is that an
irrational number « is of type n; if and only if for every 7 > n there is a constant ¢ = c(7, &) such
that « is of type < ¥ where ¥ (q) = cq® . It is well known that almost all numbers are of type 1.
From Roth’s theorem, we note that all algebraic irrationalities o satisfy
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