

Contents lists available at ScienceDirect

Journal of Number Theory

On certain exponential sums over primes

H. Maier a, A. Sankaranarayanan b,*,1

ARTICLE INFO

Article history: Received 9 July 2008 Revised 7 January 2009 Available online 20 March 2009 Communicated by K. Soundararajan

MSC:

primary 11L20 secondary 11L07, 11L15

Keywords: Exponential sums von Mangoldt function Vaughan's identity Difference operator Hölder's inequality

ABSTRACT

Let f(x) be a real valued polynomial in x of degree $k \geqslant 4$ with leading coefficient α . In this paper, we prove a non-trivial upper bound for the quantity

$$\left| \sum_{p \leqslant N} (\log p) e(f(p)) \right|$$

whenever the leading coefficient α of f(x) is of type 1. © 2009 Elsevier Inc. All rights reserved.

1. Introduction

The estimations of exponential and related sums are of great importance in number theory. A more general problem is to estimate an upper bound for the quantity

$$\left| \sum_{n \le N} a_n e(f(n)) \right|, \tag{1.1}$$

^a Institute for Number Theory and Probability Theory, University of Ulm, D-89069 Ulm, Germany

^b School of Mathematics, TIFR, Homi Bhabha Road, Mumbai 400 005, Maharashtra, India

^{*} Corresponding author.

E-mail addresses: helmut.maier@uni-ulm.de (H. Maier), ayyadurai.sankaranarayanan@uni-ulm.de, sank@math.tifr.res.in

(A. Sankaranarayanan).

Current Address: Institute for Number Theory and Probability Theory, University of Ulm, D-89069 Ulm, Germany.

where a_n 's are certain complex numbers and f(n) is a nice function. When $a_n = \Lambda(n)$ (the von Mangoldt function), the estimation of the sum S in question essentially turns out to be estimating a certain exponential sum over primes, more precisely,

$$\left| \sum_{n \leq N} \Lambda(n) e(f(n)) \right| = \sum_{p \leq N} (\log p) e(f(p)) + O(N^{\frac{1}{2}}). \tag{1.2}$$

Throughout the paper, f(x) is a real valued polynomial of degree $k \geq 2$ with the leading coefficient α . There are several interesting results available in the literature. For example, G. Harman proved the following theorem (see Theorem 1) in [4].

Theorem A. Suppose $\epsilon > 0$ is given. Let $\gamma_1(k) = 4^{1-k}$. Suppose that there are integers a, q such that

$$|q\alpha - a| < q^{-1}$$
 with $(a, q) = 1$.

Then we have

$$\sum_{p \le N} (\log p) e(f(p)) \ll N^{1+\epsilon} \left(\frac{1}{q} + \frac{1}{N^{\frac{1}{2}}} + \frac{q}{N^k}\right)^{\gamma_1(k)}.$$

For an application of Theorem A with large q, we refer to [1]. A. Ghosh considered some special cases of the above sum when $f(p) = \alpha p^2$ or αp^3 (see [3]). It should be mentioned here that K. Kawada and T.D. Wooley have studied estimations of sums of the kind $\sum_{P\leqslant p<2P}e(\alpha p^k)$ with some restrictions on α in connection with the Waring–Goldbach problem for fourth and fifth powers (see [7] and also [6]). The above estimates are in general good whenever the degree of f(x) is small. On the other hand, if k is large, Vinogradov's (see [20]) result shows that in place of $\gamma_1(k)$ in Theorem A, we can have $(25k^2(2+\log k))^{-1}$. If f is a monomial and α is rational, then Theorem 2 of [14] shows that, Theorem A can be substantially improved to

$$\sum_{n \le N} (\log p) e\left(\frac{ap^k}{q}\right) \ll (\log N)^{7/2} q^{\epsilon} \left(N^{\frac{1}{2}} q^{\frac{1}{2}} + N q^{-\frac{1}{2}} + N^{\frac{3}{4}} q^{\frac{1}{8}}\right)$$
(1.3)

(see also the related works [2,5,15,16,18,19]).

Since our Main Theorem below depends on the type of α , let us recall this notion (see p. 121 of [9] for more details). Let ψ be a non-decreasing positive function that is defined at least for all positive integers. The irrational number α is said to be of type $<\psi$ if $q\|q\alpha\|\geqslant \frac{1}{\psi(q)}$ holds for all positive integers q. If ψ is a constant function, then an irrational α of type $<\psi$ is also called of constant type. Let η_1 be a positive real number or infinity. The irrational number α is said to be of type η_1 if η_1 is the supremum of all δ_1 for which

$$\liminf_{q\to\infty}q^{\delta_1}\|q\alpha\|=0,$$

where q runs through the positive integers. The relationship between these two definitions is that an irrational number α is of type η_1 if and only if for every $\tau > \eta_1$ there is a constant $c = c(\tau, \alpha)$ such that α is of type $<\psi$ where $\psi(q) = cq^{\tau-1}$. It is well known that almost all numbers are of type 1. From Roth's theorem, we note that all algebraic irrationalities α satisfy

Download English Version:

https://daneshyari.com/en/article/4594785

Download Persian Version:

https://daneshyari.com/article/4594785

<u>Daneshyari.com</u>