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Let f (x) be a real valued polynomial in x of degree k � 4 with
leading coefficient α. In this paper, we prove a non-trivial upper
bound for the quantity

∣∣∣∣∑
p�N

(log p)e
(

f (p)
)∣∣∣∣

whenever the leading coefficient α of f (x) is of type 1.
© 2009 Elsevier Inc. All rights reserved.

1. Introduction

The estimations of exponential and related sums are of great importance in number theory. A more
general problem is to estimate an upper bound for the quantity
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where an ’s are certain complex numbers and f (n) is a nice function. When an = Λ(n) (the von Man-
goldt function), the estimation of the sum S in question essentially turns out to be estimating a
certain exponential sum over primes, more precisely,
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2
)
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Throughout the paper, f (x) is a real valued polynomial of degree k (� 2) with the leading coef-
ficient α. There are several interesting results available in the literature. For example, G. Harman
proved the following theorem (see Theorem 1) in [4].

Theorem A. Suppose ε > 0 is given. Let γ1(k) = 41−k. Suppose that there are integers a, q such that

|qα − a| < q−1 with (a,q) = 1.

Then we have
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For an application of Theorem A with large q, we refer to [1]. A. Ghosh considered some spe-
cial cases of the above sum when f (p) = αp2 or αp3 (see [3]). It should be mentioned here that
K. Kawada and T.D. Wooley have studied estimations of sums of the kind

∑
P�p<2P e(αpk) with

some restrictions on α in connection with the Waring–Goldbach problem for fourth and fifth powers
(see [7] and also [6]). The above estimates are in general good whenever the degree of f (x) is small.
On the other hand, if k is large, Vinogradov’s (see [20]) result shows that in place of γ1(k) in Theo-
rem A, we can have (25k2(2 + log k))−1. If f is a monomial and α is rational, then Theorem 2 of [14]
shows that, Theorem A can be substantially improved to
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(1.3)

(see also the related works [2,5,15,16,18,19]).
Since our Main Theorem below depends on the type of α, let us recall this notion (see p. 121 of [9]

for more details). Let ψ be a non-decreasing positive function that is defined at least for all positive
integers. The irrational number α is said to be of type < ψ if q‖qα‖ � 1

ψ(q)
holds for all positive

integers q. If ψ is a constant function, then an irrational α of type < ψ is also called of constant type.
Let η1 be a positive real number or infinity. The irrational number α is said to be of type η1 if η1 is
the supremum of all δ1 for which

lim inf
q→∞ qδ1‖qα‖ = 0,

where q runs through the positive integers. The relationship between these two definitions is that an
irrational number α is of type η1 if and only if for every τ > η1 there is a constant c = c(τ ,α) such
that α is of type < ψ where ψ(q) = cqτ−1. It is well known that almost all numbers are of type 1.
From Roth’s theorem, we note that all algebraic irrationalities α satisfy
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