

Contents lists available at ScienceDirect

Journal of Number Theory

Explicit construction of self-dual integral normal bases for the square-root of the inverse different *

Erik Jarl Pickett

Mathématiques, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland

ARTICLE INFO

Article history: Received 31 July 2008 Revised 29 January 2009 Available online 17 April 2009 Communicated by John S. Hsia

Keywords:
Local field
Galois module
Self-dual
Normal basis
Lubin-Tate
Formal group
Inverse different
Trace form
Dwork's power series

ABSTRACT

Let K be a finite extension of \mathbb{Q}_p , let L/K be a finite abelian Galois extension of odd degree and let \mathfrak{D}_L be the valuation ring of L. We define $A_{L/K}$ to be the unique fractional \mathfrak{D}_L -ideal with square equal to the inverse different of L/K. For p an odd prime and L/\mathbb{Q}_p contained in certain cyclotomic extensions, Erez has described integral normal bases for A_{L/\mathbb{Q}_p} that are self-dual with respect to the trace form. Assuming K/\mathbb{Q}_p to be unramified we generate odd abelian weakly ramified extensions of K using Lubin–Tate formal groups. We then use Dwork's exponential power series to explicitly construct self-dual integral normal bases for the square-root of the inverse different in these extensions.

© 2009 Elsevier Inc. All rights reserved.

1. Introduction

Let K be a finite extension of \mathbb{Q}_p and let \mathfrak{O}_K be the valuation ring of K with unique maximal ideal \mathfrak{P}_K and residue field k. We let L/K be a finite Galois extension of odd degree with Galois group G and let \mathfrak{O}_L be the integral closure of \mathfrak{O}_K in L. From [12, IV §2, Proposition 4], this means that the different, $\mathfrak{D}_{L/K}$, of L/K will have an even valuation, and so we define $A_{L/K}$ to be the unique fractional ideal such that

$$A_{L/K} = \mathfrak{D}_{L/K}^{-1/2}.$$

E-mail address: erikjarl.pickett@epfl.ch.

[†] Part of this work was completed when the author was at the University of Manchester, studying for a PhD under the supervision of M.J. Taylor.

We let $T_{L/K}: L \times L \to K$ be the symmetric non-degenerate K-bilinear form associated to the trace map (i.e., $T_{L/K}(x,y) = Tr_{L/K}(x,y)$) which is G-invariant in the sense that $T_{L/K}(g(x),g(y)) = T_{L/K}(x,y)$ for all g in G.

In [1] Bayer-Fluckiger and Lenstra prove that for an odd extension of fields, L/K, of characteristic not equal to 2, then $(L, T_{L/K})$ and (KG, l) are isometric as K-forms, where $l: KG \times KG \to K$ is the bilinear extension of $l(g, h) = \delta_{g,h}$ for $g, h \in G$. This is equivalent to the existence of a self-dual normal basis generator for L, i.e., an $x \in L$ such that L = KG.x and $T_{L/K}(g(x), h(x)) = \delta_{g,h}$.

If $M \subset KG$ is a free \mathfrak{D}_KG -lattice, and is self-dual with respect to the restriction of I to \mathfrak{D}_KG , then Fainsilber and Morales have proved that if |G| is odd, then $(M,I) \cong (\mathfrak{D}_KG,I)$ (see [6, Corollary 4.7]). The square-root of the inverse different, $A_{L/K}$, is a Galois module that is self-dual with respect to the trace form. From [4, Theorem 1], we know that $A_{L/K}$ is a free \mathfrak{D}_KG -module if and only if L/K is at most weakly ramified, i.e., if the second ramification group is trivial. We know that if [L:K] is odd, then $(L,T_{L/K})\cong (KG,I)$. Therefore, if [L:K] is odd, $(A_{L/K},T_{L/K})$ is isometric to (\mathfrak{D}_KG,I) if and only if L/K is at most weakly ramified. Equivalently, there exists a self-dual integral normal basis generator for $A_{L/K}$ if and only if L/K is weakly ramified.

We remark that this problem has not been solved in the global setting. Erez and Morales show in [5] that, for an odd tame abelian extension of \mathbb{Q} , a self-dual integral normal basis does exist for the square-root of the inverse different. However, in [13], Vinatier gives an example of a non-abelian tamely ramified extension, N/\mathbb{Q} , where such a basis for $A_{N/\mathbb{Q}}$ does not exist.

We now assume K is a finite unramified extension of \mathbb{Q}_p of degree d. We fix a uniformising parameter, π , and let $q=p^d=|k|$. We define $K_{\pi,n}$ to be the unique field obtained by adjoining to K the $[\pi^n]$ -division points of a Lubin–Tate formal group associated to π . We note that $K_{\pi,n}/K$ is a totally ramified abelian extension of degree $q^{n-1}(q-1)$. In Section 2 we choose $\pi=p$ and prove that the pth roots of unity are contained in the field $K_{p,1}$, therefore any abelian extension of exponent p above $K_{p,1}$ will be a Kummer extension.

Let $\gamma^{p-1} = -p$. In [2, §5], Dwork introduces the exponential power series,

$$E_{\gamma}(X) = \exp(\gamma X - \gamma X^p),$$

where the right-hand side is to be thought of as the power series expansion of the exponential function. In [10] Lang presents a proof that $E_{\gamma}(X)|_{X=\eta}$ converges p-adically if $v_p(\eta)\geqslant 0$ and also that $E_{\gamma}(X)|_{X=1}$ is equal to a primitive pth root of unity. In Section 3 we use Dwork's power series to construct a set $\{e_0,\ldots,e_{d-1}\}\subset K_{p,1}$ such that $K_{p,2}=K_{p,1}(e_0^{1/p},\ldots,e_{d-1}^{1/p})$. In Section 3 we use these elements to obtain very explicit constructions of self-dual integral normal basis generators for $A_{M/K}$ where M/K is any Galois extension of degree p contained in $K_{p,2}$.

When $K = \mathbb{Q}_p$ and $\pi = p$ the nth Lubin-Tate extensions are the cyclotomic extensions obtained by adjoining p^n th roots of unity to K. Hence the study of the Lubin-Tate extensions, $K_{p,n}$, can be thought of as a generalisation of cyclotomy theory. In [3] Erez studies a weakly ramified p-extension of \mathbb{Q} contained in the cyclotomic field $\mathbb{Q}(\zeta_{p^2})$ where ζ_{p^2} is a p^2 th root of unity. He constructs a self-dual normal basis for the square-root of the inverse different of this extension. It turns out that the weakly ramified extension studied by Erez is, in fact, a special case of the extensions studied in Section 3 and the self-dual normal basis generator that he constructs is the corresponding basis generator we have generated using Dwork's power series, so this work generalises results in [3].

2. Kummer generators

The construction of abelian Galois extensions of local fields using Lubin–Tate formal groups is standard in local class field theory. For a detailed account see, for example, [9] or [11]. We include a brief overview for the convenience of the reader and to fix some notation.

Let K be a finite extension of \mathbb{Q}_p , contained in a fixed algebraic closure \bar{K} . Let π be a uniformising parameter for \mathfrak{O}_K and let $q = |\mathfrak{O}_K/\mathfrak{P}_K|$ be the cardinality of the residue field. We let $f(X) \in X\mathfrak{O}_K[\![X]\!]$ be such that

$$f(X) \equiv \pi X \mod \deg 2$$
, and $f(X) \equiv X^q \mod \pi$.

Download English Version:

https://daneshyari.com/en/article/4594791

Download Persian Version:

https://daneshyari.com/article/4594791

<u>Daneshyari.com</u>