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Congruences involving Bernoulli and Euler numbers
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Abstract

Let [x] be the integral part of x. Let p > 5 be a prime. In the paper we mainly determine∑[p/4]
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k2 (mod p2) in terms of Euler
and Bernoulli numbers. For example, we have
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where En is the nth Euler number and Bn is the nth Bernoulli number.
© 2007 Elsevier Inc. All rights reserved.

MSC: primary 11B68; secondary 11A07

Keywords: Congruence; Bernoulli number; Bernoulli polynomial; Euler number

1. Introduction

The Bernoulli numbers {Bn} and Bernoulli polynomials {Bn(x)} are defined by
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Bk = 0 (n � 2) and Bn(x) =
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n−k (n � 0).
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The Euler numbers {En} and Euler polynomials {En(x)} are defined by
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which are equivalent to (see [MOS])

E0 = 1, E2n−1 = 0,
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Let [x] be the integral part of x. For a given prime p let Zp denote the set of rational p-
integers (those rational numbers whose denominator is not divisible by p). For a ∈ Zp with
a �≡ 0 (mod p), as usual we define the Fermat quotient qp(a) = (ap−1 − 1)/p. In the paper we
establish some congruences involving Bernoulli and Euler numbers. In particular, in Zp we have
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where p is a prime greater than 5.
In addition to the above notation, we also use throughout this paper the following notation:

Z—the set of integers, N—the set of positive integers, {x}—the fractional part of x, ϕ(n)—
Euler’s totient function.

2. Basic lemmas

We begin with a useful identity involving Bernoulli polynomials.
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