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Abstract

Let [x] be the integral part of x. Let p > 5 be a prime. In the paper we mainly determine
4 -1 —1 ok —1 gk .
ZECPZ/I] ka (mod p?), ([’;7/4]) (mod p3), Zle 27 (mod p3) and Zf:l i—z (mod p?) in terms of Euler
and Bernoulli numbers. For example, we have
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where E}, is the nth Euler number and B, is the nth Bernoulli number.
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1. Introduction

The Bernoulli numbers {B,} and Bernoulli polynomials {B, (x)} are defined by

n—1 n
Bo=1, Z(Z)BFO (n>2) and Bn<x>=2<’;)3kx"—k (n>0).
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The Euler numbers {E,} and Euler polynomials {E, (x)} are defined by
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which are equivalent to (see [MOS])
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Let [x] be the integral part of x. For a given prime p let Z, denote the set of rational p-
integers (those rational numbers whose denominator is not divisible by p). For a € Z, with
a # 0 (mod p), as usual we define the Fermat quotient g, (a) = (a” ~1' —1)/p. In the paper we
establish some congruences involving Bernoulli and Euler numbers. In particular, in Z, we have
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where p is a prime greater than 5.
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Y c=a0-p < 4p @ + (=)' (Bzp_s — 2E, 3>)+3p 4p@°  (mod p?),

In addition to the above notation, we also use throughout this paper the following notation:
Z—the set of integers, N—the set of positive integers, {x}—the fractional part of x, ¢(n)—

Euler’s totient function.
2. Basic lemmas

We begin with a useful identity involving Bernoulli polynomials.
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