

Available online at www.sciencedirect.com

JOURNAL OF Number Theory

Journal of Number Theory 128 (2008) 2784-2794

www.elsevier.com/locate/jnt

On recurrences for sums of powers of binomial coefficients

Jin Yuan^a, Zhi-Juan Lu^{a,*}, Asmus L. Schmidt^b

^a Department of Mathematics, Northwest University, Xi'an 710127, People's Republic of China ^b Matematisk Institut, Universitetsparken 5, Copenhagen DK-2100, Denmark

Received 30 October 2007; revised 9 March 2008

Available online 2 July 2008

Communicated by David Goss

Abstract

The recurrence for sums of powers of binomial coefficients is considered and a lower bound for the minimal length of the recurrence is obtained by using the properties of congruence.

Video abstract: For a video summary of this paper, please visit http://www.youtube.com/watch?v=jwy6B4aYR-Q.

© 2008 Elsevier Inc. All rights reserved.

Keywords: Binomial coefficients; Congruence; Recurrence

1. Introduction

For any $r \in N = \{1, 2, ...\}$ we consider the sums

$$a_n^{(r)} = S_r(n) = \sum_{k=0}^n \binom{n}{k}^r, \quad n \ge 0.$$
 (1)

These sums have been studied by many authors. Apart from the trivial recurrences for $S_1(n) = 2^n$ and $S_2(n) = \binom{2n}{n}$, Calkin [1] claims (citing Wilf) that for $3 \le a \le 9$, there is no closed form for $s_r(n)$. J. Franel [3,4] was the first to obtain recurrences for $S_3(n)$ and $S_4(n)$, namely

* Corresponding author.

0022-314X/\$ – see front matter @ 2008 Elsevier Inc. All rights reserved. doi:10.1016/j.jnt.2008.03.011

E-mail address: luzhijuan_2004_2004@yahoo.com.cn (Z.-J. Lu).

$$P_0(n)S_r(n+1) + P_1(n)S_r(n) + P_2(n)S_r(n-1) = 0, \quad n \ge 0,$$
(2)

where for r = 3:

$$P_0(n) = (n+1)^2$$
, $P_1(n) = -(7n^2 + 7n + 2)$, $P_2(n) = -8n^2$

and for r = 4:

$$P_0(n) = (n+1)^3,$$
 $P_1(n) = -2(2n+1)(3n^2+3n+1),$
 $P_2(n) = -4n(4n+1)(4n-1).$

Franel also conjectured that $S_r(n)$ would satisfy similar recurrences for each $r \in N$, and more precisely of length $[\frac{1}{2}(r+3)]$ and of polynomial degree $\leq r-1$. The existence of such recurrences was first proved by R.P. Stanley [7], however without any bounds on the lengths and degrees. For r = 5, 6 M.A. Perlstadt [6] found recurrences of length 4, namely

$$P_0(n)S_r(n+1) + P_1(n)S_r(n) + P_2(n)S_r(n-1) + P_3(n)S_r(n-2) = 0, \quad n \ge 0,$$

where for r = 5:

$$P_0(n) = (n+1)^4 (55n^2 - 77n + 28),$$

$$P_1(n) = -1155n^6 - 693n^5 + 732n^4 + 715n^3 - 45n^2 - 210n - 56,$$

$$P_2(n) = -19415n^6 + 27181n^5 - 7453n^4 - 3289n^3 + 956n^2 + 276n - 96,$$

$$P_3(n) = 32(n-1)^4 (55n^2 + 33n + 6)$$

and for r = 6:

$$\begin{split} P_0(n) &= n(n+1)^5 \big(91n^3 - 182n^2 + 126n - 30\big), \\ P_1(n) &= -n \big(3458n^8 + 1729n^7 - 2947n^6 - 2295n^5 + 901n^4 + 1190n^3 + 52n^2 - 228n - 60\big), \\ P_2(n) &= -153881n^9 + 307762n^8 - 185311n^7 - 2960n^6 + 31631n^5 + 88n^4 - 5239n^3 \\ &\quad + 610n^2 + 440n - 100, \\ P_3(n) &= 24(n-1)^3(2n-1)(6n-7)(6n-5) \big(91n^3 + 91n^2 + 35n + 5\big). \end{split}$$

It was proved by T.W. Cusick [2] that $S_r(n)$ as predicted by Franel actually satisfies a polynomial recurrence of length $[\frac{1}{2}(r+3)]$ for all $r \ge 1$, however, as pointed out by M. Stoll [8], there is a gap in Cusick's argument. On the other hand Stoll proved Franel's by extending Stanly's approach.

For $7 \le r \le 10$ R.J. McIntosh [5] used Cusick's method to compute such recurrences. For $S_r(n)$ no lower bounds (r > 2) for the lengths of recurrences have been known (even for r = 3, 4).

In some similar cases it is possible to get lower bounds from the asymptotics of the sequences (e.g. for Apéry's sequence). However for the sequence $S_r(n)$ one has the asymptotic formula

2785

Download English Version:

https://daneshyari.com/en/article/4595059

Download Persian Version:

https://daneshyari.com/article/4595059

Daneshyari.com