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Abstract

The recurrence for sums of powers of binomial coefficients is considered and a lower bound for the
minimal length of the recurrence is obtained by using the properties of congruence.
Video abstract: For a video summary of this paper, please visit http://www.youtube.com/watch?v=
jwy6B4aYR-Q.
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1. Introduction

For any r ∈ N = {1,2, . . .} we consider the sums

a(r)
n = Sr(n) =

n∑
k=0

(
n

k

)r

, n � 0. (1)

These sums have been studied by many authors. Apart from the trivial recurrences for S1(n) = 2n

and S2(n) = (2n
n

)
, Calkin [1] claims (citing Wilf) that for 3 � a � 9, there is no closed form for

sr (n). J. Franel [3,4] was the first to obtain recurrences for S3(n) and S4(n), namely

* Corresponding author.
E-mail address: luzhijuan_2004_2004@yahoo.com.cn (Z.-J. Lu).

0022-314X/$ – see front matter © 2008 Elsevier Inc. All rights reserved.
doi:10.1016/j.jnt.2008.03.011



Y. Jin et al. / Journal of Number Theory 128 (2008) 2784–2794 2785

P0(n)Sr(n + 1) + P1(n)Sr(n) + P2(n)Sr(n − 1) = 0, n � 0, (2)

where for r = 3:

P0(n) = (n + 1)2, P1(n) = −(
7n2 + 7n + 2

)
, P2(n) = −8n2

and for r = 4:

P0(n) = (n + 1)3, P1(n) = −2(2n + 1)
(
3n2 + 3n + 1

)
,

P2(n) = −4n(4n + 1)(4n − 1).

Franel also conjectured that Sr(n) would satisfy similar recurrences for each r ∈ N, and more
precisely of length [ 1

2 (r + 3)] and of polynomial degree � r − 1. The existence of such recur-
rences was first proved by R.P. Stanley [7], however without any bounds on the lengths and
degrees. For r = 5,6 M.A. Perlstadt [6] found recurrences of length 4, namely

P0(n)Sr(n + 1) + P1(n)Sr(n) + P2(n)Sr(n − 1) + P3(n)Sr(n − 2) = 0, n � 0,

where for r = 5:

P0(n) = (n + 1)4(55n2 − 77n + 28
)
,

P1(n) = −1155n6 − 693n5 + 732n4 + 715n3 − 45n2 − 210n − 56,

P2(n) = −19415n6 + 27181n5 − 7453n4 − 3289n3 + 956n2 + 276n − 96,

P3(n) = 32(n − 1)4(55n2 + 33n + 6
)

and for r = 6:

P0(n) = n(n + 1)5(91n3 − 182n2 + 126n − 30
)
,

P1(n) = −n
(
3458n8 + 1729n7 − 2947n6 − 2295n5 + 901n4 + 1190n3 + 52n2 − 228n − 60

)
,

P2(n) = −153881n9 + 307762n8 − 185311n7 − 2960n6 + 31631n5 + 88n4 − 5239n3

+ 610n2 + 440n − 100,

P3(n) = 24(n − 1)3(2n − 1)(6n − 7)(6n − 5)
(
91n3 + 91n2 + 35n + 5

)
.

It was proved by T.W. Cusick [2] that Sr(n) as predicted by Franel actually satisfies a polyno-
mial recurrence of length [ 1

2 (r + 3)] for all r � 1, however, as pointed out by M. Stoll [8], there
is a gap in Cusick’s argument. On the other hand Stoll proved Franel’s by extending Stanly’s
approach.

For 7 � r � 10 R.J. McIntosh [5] used Cusick’s method to compute such recurrences.
For Sr(n) no lower bounds (r > 2) for the lengths of recurrences have been known (even for

r = 3,4).
In some similar cases it is possible to get lower bounds from the asymptotics of the sequences

(e.g. for Apéry’s sequence). However for the sequence Sr(n) one has the asymptotic formula
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