
The Journal of Systems and Software 98 (2014) 25–43

Contents lists available at ScienceDirect

The Journal of Systems and Software

j ourna l ho mepage: www.elsev ier .com/ locate / j ss

DRE system performance optimization with the SMACK cache
efficiency metric

Hamilton Turnera,∗, Brian Doughertyb, Jules Whiteb, Russell Kegleyc,1,
Jonathan Prestonc,1, Douglas C. Schmidtb, Aniruddha Gokhaleb

a Virginia Polytechnic, United States
b Vanderbilt University, United States
c Lockheed Martin Aeronautics, United States

a r t i c l e i n f o

Article history:
Received 2 December 2013
Received in revised form 26 June 2014
Accepted 16 August 2014
Available online 27 August 2014

Keywords:
DRE
Deployment
Optimization
Heuristic
Cache

a b s t r a c t

System performance improvements are critical for the resource-limited environment of multiple inte-
grated applications executing inside a single distributed real-time and embedded (DRE) system, such
as integrated avionics platform or vehtronics systems. While processor caches can effectively reduce
execution time there are several factors, such as cache size, system data sharing, and task execution
schedule, which make it hard to quantify, predict, and optimize the cache usage of a DRE system. This
article presents SMACK, a novel heuristic for estimating the hardware cache usage of a DRE system,
and describes a method of varying the runtime behavior of DRE system software without (1) requiring
extensive safety recertification or (2) violating the real-time scheduling deadlines. By using SMACK as
a maximization target, we were able to reduce integrated DRE system execution time by an average of
2.4% and a maximum of 4.34%.

© 2014 Elsevier Inc. All rights reserved.

1. Introduction

Current trends and challenges: Distributed real-time and
embedded (DRE) systems, such as integrated avionics systems and
vehtronics systems, are subject to stringent real-time constraints.
To ensure these real-time requirements are met, these systems
must minimize software execution time. One approach to reduce
DRE execution time is to reduce the time spent loading data from
memory by efficiently utilizing processor caching hardware.

Multiple design techniques have been researched for reducing
system execution time by increasing processor cache utilization.
For example, Bahar et al. (2005) examined several different cache
techniques for reducing execution time by increasing cache utiliza-
tion efficiency. Their experiments showed that efficiently utilizing
a processor cache can result in as much as a 24% reduction
in execution time. Likewise, Manjikian and Abdelrahman (1995)
demonstrated a 25% reduction in execution time as a result of

∗ Corresponding author. Tel.: +1 6158183577.
E-mail addresses: hamiltont@vt.edu, hamiltont@gmail.com, hturner0@vt.edu

(H. Turner), briand@dre.vanderbilt.edu (B. Dougherty), julesw@dre.vanderbilt.edu
(J. White), russell.b.kegley@lmco.com (R. Kegley), jonathan.d.preston@lmco.com
(J. Preston), schmidt@dre.vanderbilt.edu (D.C. Schmidt),
gokhale@dre.vanderbilt.edu (A. Gokhale).

1 This work was sponsored in part by the Air Force Research Lab.

modifying the source-code of the executing software to use cache
partitioning.

Many optimization techniques (Reineke et al., 2007; Nayfeh and
Olukotun, 1994; Sprangle et al., 2002) exist to increase how effi-
ciently caches are utilized by modifying application source code
to increase the temporal locality of data accesses, which defines
the proximity with which shared data is accessed in terms of
time (Kowarschik et al., 2003). For example, loop interchange and
loop fusion techniques can be used to increase temporal locality
of accessed data by modifying software application source code
to change the order in which application data is written to and
read from a processor cache (Kowarschik et al., 2003; Manjikian
and Abdelrahman, 1995). Increasing temporal locality increases
the probability that data common to multiple tasks will persist in
the cache, resulting in reduced cache-misses and software execu-
tion time (Kowarschik et al., 2003; Manjikian and Abdelrahman,
1995).

In general, however, prior work has focused on source-code
level modifications for single applications, which is problematic
for DRE systems built from multiple integrated applications, such
as the architecture shown in Fig. 1. Source code modifications in
an integrated DRE system are infeasible due to 1) the proprietary
nature of individual applications, and 2) safety requirements which
necessitate extremely extensive certification after any source code
modifications.

http://dx.doi.org/10.1016/j.jss.2014.08.031
0164-1212/© 2014 Elsevier Inc. All rights reserved.

dx.doi.org/10.1016/j.jss.2014.08.031
http://www.sciencedirect.com/science/journal/01641212
http://www.elsevier.com/locate/jss
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jss.2014.08.031&domain=pdf
mailto:hamiltont@vt.edu
mailto:hamiltont@gmail.com
mailto:hturner0@vt.edu
mailto:briand@dre.vanderbilt.edu
mailto:julesw@dre.vanderbilt.edu
mailto:russell.b.kegley@lmco.com
mailto:jonathan.d.preston@lmco.com
mailto:schmidt@dre.vanderbilt.edu
mailto:gokhale@dre.vanderbilt.edu
dx.doi.org/10.1016/j.jss.2014.08.031

26 H. Turner et al. / The Journal of Systems and Software 98 (2014) 25–43

Fig. 1. Example of an integrated avionics system.

An integrated DRE system is composed of many individual appli-
cations, which are frequently provided by distinct subcontractors.
License issues may prevent access to the source code, or prevent the
right to modify or recompile the source code. Moreover, DRE system
designers may not have the expertise to safely modify application-
specific source code to improve the temporal locality of the source
code.

Integrated DRE systems are often subject to stringent safety
requirements, such as bounding the frequency at which hardware
failures can occur and preventing code-level errors in application
software, middleware, and operating systems. To help ensure pre-
dictable behavior, applications in integrated DRE systems must
undergo a rigorous safety inspection process. After this process is
completed and the result has been certified, any alteration to an
application may invalidate the certification. Safety requirements
thus pose a significant barrier to the use of cache optimization
techniques that require source code alterations.

Solution approach → Heuristic-Driven Schedule Alteration
of Same-rate Tasks to Increase Cache Utilization.

Priority-based scheduling techniques can help ensure DRE sys-
tem software executes without missing real-time deadlines. For
example, rate-monotonic scheduling (Pingali et al., 2007) is a tech-
nique for creating task execution schedules that satisfy real-time
constraints by assigning priorities to tasks based on the task period-
icity and ensuring utilization bounds are not exceeded. These tasks
are then split into sets that contain tasks of the same priority/rate.

Rate-monotonic scheduling specifies that tasks of the same rate
can be scheduled arbitrarily (Dhall and Liu, 1978). Fig. 2 shows
two different valid task execution schedules generated with rate-
monotonic scheduling. As Task A1 and Task B1 share the same
priority, their execution order can be swapped without violat-
ing real-time constraints. Each scheduling problem with at least
one valid execution order therefore has a number of equally valid
permutations, which can be created by rearranging the order
of same-rate tasks. This research shows that it is possible to

Fig. 2. Valid task execution schedules.

improve the cache hit-rate of integrated DRE systems by select-
ing a valid execution order that increases the temporal locality of
data accesses.

Critically, our approach for improving cache utilization of inte-
grated DRE systems does not require any source code modifications.
This allows DRE system integrators to improve integrated DRE
system performance without invalidating application safety recer-
tification, requiring legal agreements to share source code, or
needing specialized expertise for each application. Our modifica-
tions only change the execution order of same-rate tasks, which
results in a system that is still a valid rate-monotonically sched-
uled application as interchanging tasks of identical utilization does
not change the value of the Liu–Layland bound (Dhall and Liu,
1978). To select the best valid schedule from the set of all possi-
ble valid schedules, we introduce the System Metric for Application
Cache Knowledge (SMACK) heuristic, which measures the maximum
possible cache utilization of a given execution schedule. SMACK
considers several factors, such as cache size, data sharing, and task
execution schedule, to provide developers with a way to determine
which orderings of same-rate tasks have higher potential for cache
utilization. SMACK enables DRE system designers to manipulate
models of system runtime behavior without having to repeatedly
construct and measure potential system implementations, thereby
yielding performance increases without expending undue effort on
multiple implementations.

This article provides the following contributions to integrated
DRE system creation and deployment:

• We present a real-time scheduling heuristic for same-rate tasks
that satisfies real-time scheduling constraints and safety require-
ments, increases cache hits, and requires no new hardware,
software, or middleware. Proper use of this heuristic enables
reduction in execution time of rate-monotonically scheduled DRE
systems without requiring recertification.

• To motivate the need for scheduling enhancements to improve
the efficiency of cache utilization in integrated DRE systems, we
present an industry case study of an integrated avionics system
in which modifications to the constituent applications are pro-
hibitively expensive due to safety certification requirements.

• We provide a formal methodology for calculating the “SMACK
score”, which quantifies the temporal locality of different exe-
cution schedules for the same-rate tasks in an integrated DRE
system.

• We present empirical results of the performance of 44 simulated
integrated DRE systems, each with different data sharing char-
acteristics and task execution schedules, and demonstrate that
the calculated SMACK score correlates with an increased cache

Download English Version:

https://daneshyari.com/en/article/459525

Download Persian Version:

https://daneshyari.com/article/459525

Daneshyari.com

https://daneshyari.com/en/article/459525
https://daneshyari.com/article/459525
https://daneshyari.com

