
The Journal of Systems and Software 98 (2014) 155–171

Contents lists available at ScienceDirect

The  Journal  of  Systems  and  Software

j ourna l ho mepage: www.elsev ier .com/ locate / j ss

On  building  a  consistent  framework  for  executable  systems
architecture

Imran  Khan,  Sajjad  Haider ∗

Faculty of Computer Science, Institute of Business Administration, Karachi, Pakistan

a  r  t  i  c  l  e  i  n  f  o

Article history:
Received 14 October 2013
Received in revised form 27 August 2014
Accepted 27 August 2014
Available online 6 September 2014

Keywords:
Systems engineering
Executable systems architecture
Colored Petri Nets

a  b  s  t  r  a  c  t

The  paper  presents  a framework  for executable  systems  architecture.  Termed  as  Consistent  Systems
Architecture  Description  and Behavior  Framework  (CSADBF),  the  framework  shows  how  consistency  can
be maintained  while  modeling  architectural  description  of  systems  as well  as  their  behavior.  Convergence
of  three  established  modeling  techniques:  ontology,  UML,  and  Colored  Petri  Nets  (CPN),  is used  to  develop
this  framework.  Each  tool  complements  others  in accomplishing  the  goal  of consistency  maintenance
for  the  executable  systems  architecture.  The  framework  suggests  various  mapping  schemes  that  help  in
establishing  strong  concordance  among  different  artifacts  of  these  modeling  techniques  and  maintaining
consistency  of  overall  system  architecture.  The  first scheme  maps  OWL  ontology  to UML  and  is responsible
for maintaining  consistency  of the architectural  description.  The  second  scheme  maps  combination  of
OWL  ontology  and  UML to CPN  and  is  responsible  for  maintaining  consistency  between  static  and  dynamic
views.  The  third  scheme  ensures  the behavioral  consistency  of  the  architecture  by  providing  mapping
between  Semantic  Web  Rule  Language  (SWRL)  and CPN  Guard  conditions.  Thus,  the  framework  allows
architects  to model  the  systems  architecture  requirements  in  OWL  ontology  and  UML  and  to  analyze  the
behavior  and  performance  of systems  architecture  in  CPN.  The  paper  demonstrates  the  framework  with
the  help  of a case  study  and  also  compares  it  with  the existing  frameworks.

©  2014 Elsevier  Inc.  All  rights  reserved.

1. Introduction

Systems architecture can best be thought of as a representa-
tion of an existent (or to be created) system, and the process and
discipline for effectively implementing the design(s) for such a sys-
tem that defines the structure and/or behavior of a system.1 One
of the major challenges within the systems architecture domain is
the maintenance of consistency between the different diagrams
of a system’s architecture. As the number of diagrams, used to
model a system’s architecture, increases, the task of maintaining
consistency also gets more complex. It becomes even more chal-
lenging when a system’s architecture has multiple views such as
static (architectural description) and dynamic (architectural behav-
ior) and each view has multiple diagrams in it. In such situations,
the validation and verification of the overall system’s architecture
requires strong concordance between both views.

Several efforts have been reported in the literature (Wagenhals
et al., 2000, 2003; Shin et al., 2003; Noguera et al., 2009; Wang and

∗ Corresponding author. Tel.: +92 3343737606.
E-mail addresses: sajjad.haider@khi.iba.edu.pk, sahaider@iba.edu.pk (S. Haider).

1 http://en.wikipedia.org/wiki/System architecture.

Dagli, 2011) that aim to establish concordance between static and
dynamic views. Wagenhals et al. have used dataflow (Wagenhals
et al., 2000) and UML  (Wagenhals et al., 2003) to define the static
view of a system’s architecture and then mapped the corresponding
diagrams into Colored Petri Nets (CPN) to build an executable sys-
tem architecture. They give preference to their object orientation
approach over structure analysis approach due to better expressive
power of UML  as well as due to familiarity of new engineers and
architects with object orientation techniques. They have proposed
a process for creating executable architectures by defining map-
ping among UML  and CPN constructs. A subset of UML  diagrams are
used to represent the static view of an architecture. One of the main
challenges in their work is the maintenance of concordance among
different UML  diagrams. They have addressed it by developing an
integrated data dictionary manually. The data dictionary contains
definition and description of each and every elements of all the
diagrams used in the architecture. This manual maintenance of con-
cordance, however, could also be regarded as a major limitation of
their approach as it is prone to human error. The other major weak-
ness in their approach is the manual addition of operational rules in
the dynamic view of the architecture. In the context of this paper,
operational rules mean constraints in a particular domain. Weak
semantics of UML  diagrams also raises the issue of consistency

http://dx.doi.org/10.1016/j.jss.2014.08.049
0164-1212/© 2014 Elsevier Inc. All rights reserved.

dx.doi.org/10.1016/j.jss.2014.08.049
http://www.sciencedirect.com/science/journal/01641212
http://www.elsevier.com/locate/jss
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jss.2014.08.049&domain=pdf
mailto:sajjad.haider@khi.iba.edu.pk
mailto:sahaider@iba.edu.pk
http://en.wikipedia.org/wiki/System_architecture
dx.doi.org/10.1016/j.jss.2014.08.049


156 I. Khan, S. Haider / The Journal of Systems and Software 98 (2014) 155–171

(Vanderperren and Dehaene, 2005; Bahill and Daniels, 2003; Evans,
1998; Whittle, 2000; Yi-zhi et al., 2004; OMG, 2007; Costal et al.,
2011). Liles (2008) automated the manual transformation proposed
by Wagenhals et al. (2003). Liles (2008) created a code in Rational
System Developer tool that generated a file from UML  that can be
opened in CPN Tools. The transformation by Liles is limited to the
mapping of an activity diagram to a CPN model.

Wang and Dagli (2011) have developed a framework that
implements an executable system architecture by mapping SysML
notations to CPN. For this purpose, they have introduced a new
transformation scheme based on SysML Sequence diagram and
have established concordance among Sequence diagrams, Activ-
ity diagrams and Block diagrams. They use the principles of model
driven architecture (MDA) in their framework. For architecture
evaluation purposes, Wang and Dagli (2011) have used BRITNeY
Suite, a java application that runs on top of CPN that controls
the simulation and generates graphical output such as message
sequence charts (MSC) and state space graphs. They use these
outputs to verify and validate the system architecture. Concord-
ance between the diagrams in static view and the transformation
between static and dynamic views is not completely automatic. In
addition to this, the operational rules are added to CPN manually
which leaves the consistency issues open.

Noguera et al. (2009) propose a UML-based framework in com-
bination with Web  Ontology Language (OWL) ontology and CPN.
They use combination of UML  activity diagram and OWL  ontology
for static view modeling and CPN for dynamic view modeling. They
have developed ontology for UML  activity diagram that helps to
preserve the consistency of an Activity diagram. The framework
also contains a mapping scheme that maps OWL  ontology to CPN.
All the constraints/rules are defined using decision boxes in the
Activity diagram which limits the expressiveness of the modeled
operational rules as Activity diagrams has very limited support for
rules. In addition, the use of built-in CPN functions for rules map-
ping also restricts the rules mapping functionality. Moreover, the
semi-automated process of transformation between OWL  and CPN
also raises the issue of consistency.

The Department of Defense Architecture Framework (DoDAF),
a system engineering tool mainly used by the U.S. engineering and
acquisition communities (DoDAF, 2010) also provides an organized
way to model a system into a series of architecture products, and
groups them into different “views”. In 2009, DoDAF was revamped
with a new data model, the DoDAF Meta Model (DM2). The intro-
duction of DM2  shifts the focus of DoDAF from output products
or documentation, to the collection of the underlying data that
represent the architecture. DM2  introduces standard vocabulary
in DoDAF that helps in defining the purpose, scope and informa-
tion requirements of the architecture up-front and also provides a
mechanism to store that information (McDaniel, 2009). The prod-
ucts in previous versions of DoDAF are renamed as models; models
can be documents, spreadsheets, or other graphical representa-
tions, and serve as templates for organizing and displaying data in
an easily understood format. These models, populated with archi-
tectural data, become the architectural view and the collections of
these views are referred to as viewpoints. Use of multiple views
provides depth in architecture but at the same time it also makes
the model building process complex particularly for simple scenar-
ios.

Grady (2009) used a combination of UML, SysML and four arti-
facts from traditional structured analysis and developed a Universal
Architecture Description Framework. His proposed framework cov-
ers the modeling of software and hardware specification under one
umbrella. According to Grady, his proposed framework is efficient
but the framework can further be improved by forming a stronger
linkage between analytical and synthesis process from problem
space to solution space that help to strengthen the verification

process of requirement through design. In his proposed frame-
work Grady did not say much about model execution. Guangsheng
et al. (2006) suggests a manual approach for transforming OWL
DL and rules defined in Semantic Web  Rule Language (SWRL) into
Predicate Transition net (PrT-nets). The transformation allows rule
inference using Petri nets. Zou et al. (2010) proposes accountability
in business services through internet using combination of OWL
and SWRL. They validate the OWL  ontology in combination with
SWRL rules through Pellet reasoner2 and model action sequence
of concepts in CPN. They, however, do not suggest any mapping
between SWRL and CPN and rather use rules modeled in SWRL for
reasoning.

The key issues that all the above mentioned approaches aim to
solve are (a) a seamless transformation between different views
of system architecture and (b) maintenance of consistency. Both
issues are interrelated. Incomplete transformation between differ-
ent views of a system’s architecture forces the architect to manually
model the leftover architectural components. These manual activ-
ities become the main source of introducing inconsistency in the
system’s architecture. Besides consistency maintenance, the exist-
ing approaches are also unable to verify the behavioral aspect in
the static view which is due to insufficient support for modeling
behavioral element, particularly operational rules at the abstract
level within the problem domain’s architectural description. Even
the definition of operational rules in static view alone cannot solve
the problem of behavior verification unless these rules are verified
through dynamic view using a suitable simulation tool. The verifi-
cation of operational rules through a simulation tool also requires
mapping of these rules from the static view to the dynamic view.

The paper aims to address the issue of consistency maintenance
across multiple views of systems architecture using the proposed
Framework named Consistent Systems Architecture Description
and Behavior Framework (CSADBF). The framework aids architects
in validating the architectural description as well as in verifying
the behavioral aspect of a system’s architecture. Overall, CSADBF is
comprised of two  views: static and dynamic views. The framework
enables an architect to model the static view via OWL  ontology.
The reason for using OWL  ontology is to overcome the issue of
static view modeling with languages having weak semantics. Even
though ontology is good at defining a domain model but it does
not support ordering or sequencing of activities within a problem
domain and may  not be the best choice when it comes to modeling
interactions and behaviors. In the proposed framework, this short
fall is overcome via UML  activity diagram. To model the architec-
tural behavior using UML  activity diagram, the framework provides
an automated mapping of OWL  ontology constructs to UML  class
diagram constructs which in turn are used to generate UML  activ-
ity diagram constructs. Even though certain elements (such as
sequence of activities) of the activity diagram have to be built man-
ually, the framework restrict the architects from introducing any
new class (or methods) other than the classes that are available in
the class diagram created from OWL  ontology.

The dynamic view of the proposed framework uses Colored
Petri Nets (CPN). To maintain consistency in the dynamic view and
to establish concordance with given architectural description, the
framework provides a set of mapping steps. These steps map  (a)
the architectural description from ontology to CPN global decla-
ration (b) the process flow arrows from activity diagram to the
process flow arrows in the CPN graphical models and (c) oper-
ation flow defined via SWRL to Guard conditions in CPN. In this
way the framework supports automatic creation of dynamic view
from static view. An architect can verify the desired behavior of

2 Pellet is an OWL  2 reasoner, provides reasoning services for OWL  ontologies.
http://clarkparsia.com/pellet/.

http://clarkparsia.com/pellet/


Download	English	Version:

https://daneshyari.com/en/article/459532

Download	Persian	Version:

https://daneshyari.com/article/459532

Daneshyari.com

https://daneshyari.com/en/article/459532
https://daneshyari.com/article/459532
https://daneshyari.com/

