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a  b  s  t  r  a  c  t

Combinatorial  testing  (CT)  is  an  effective  technique  to test  software  with  multiple  configurable  param-
eters.  It  is used  to detect  interaction  faults  caused  by the  combination  effect  of  parameters.  CT  test
generation  aims  at  generating  covering  arrays  that  cover  all t-way  parameter  combinations,  where  t is
a given  covering  strength.  In  practical  CT usage  scenarios,  there  are  usually  constraints  between  param-
eters,  and  the  performance  of existing  constraint-handling  methods  degrades  fast  when  the  number  of
constraints  increases.

The  contributions  of  this  paper  are  (1)  we propose  a new  one-test-at-a-time  algorithm  for  CT  test
generation,  which  uses  pseudo-Boolean  optimization  to  generate  each  new  test  case;  (2)  we have  found
that  pursuing  the  maximum  coverage  for  each  test  case  is uneconomic,  and  a  possible  balance  point
is  to  keep  the approximation  ratio  in  [0.8,0.9];  (3)  we  propose  a  new  self-adaptive  mechanism  to  stop
the  optimization  process  at  a proper  time  when  generating  each  test  case;  (4)  extensive  experimental
results  show  that our  algorithm  works  fine  on existing  benchmarks,  and the  constraint-handling  ability
is  better  than  existing  approaches  when  the  number  of constraints  is large;  and  (5) we propose  a  method
to  translate  shielding  parameters  (a common  type  of  constraints)  into  normal  constraints.

©  2014 Elsevier  Inc.  All  rights  reserved.

1. Introduction

Combinatorial testing (CT) is used to test software systems
with multiple configurable parameters. For real software systems,
the number of configurable parameters may  be large, and testing
all possible configurations is not possible due to limited testing
resource. CT enables the tester to execute a small set of test cases
on the system, while achieving very high fault coverage.

The first step to apply CT is to build a parameterized model of
the system under test (SUT). The tester should first identify the
input parameters related to the test goal, i.e. parameters affecting
the system behavior which he or she is interested in during the
testing process. These parameters may  include but not limited to
the following:

• Parameters of method calls.
• Parameters in system settings.
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• A selection of replaceable system components installed in a test
environment, such as hardware devices, system libraries and
applications. These components are usually provided by multiple
third-party providers, and can have multiple versions.

After the input parameters are identified, the tester needs to
identify the value domain of each parameter. CT requires the value
domain of each input parameter to be a finite set of discrete values.
Typically, the number of possible values should not be too large,
or else the test suite size will be very large. If a parameter has too
many possible values, the tester should first select several repre-
sentative values using techniques such as equivalence partitioning,
and boundary value analysis.

Sometimes the parameters are not obvious. In these cases,
the tester needs to investigate the input domain, and build some
abstract parameters.  Abstract parameters could be some properties
of the program input, such as the length of the input file, or the
type of a triangle (e.g. is it a right triangle, acute triangle or obtuse
triangle, etc.). Then the test cases will be abstract test cases, and the
tester needs to translate the abstract test cases into concrete test
cases before execution.
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After the modeling process, the SUT is abstracted as a parame-
terized black-box model consisting of several parameters, and each
parameter has a domain of several possible values.

From a black-box perspective, the CT fault model assumes
that failures are caused by parameter combinations. These fail-
ures are the consequence of interaction faults inside the black-box.
When several parameters take specific value combinations, a fail-
ure occurs. An investigation by Kuhn and Michael (2002) shows
that in some systems, failures are usually caused by combinations
of size 1–6 in some systems, and about 90% of the failures are caused
by parameter combinations of size no more than 3.1

The key idea of CT is that since most failures are caused by small
parameter combinations, if we have tested all small parameter
combinations, then most of the interaction faults can be detected.
In CT, we usually use a covering array (CA) as the test suite, which
covers these small parameter combinations.

There are a lot of researches on covering array generation. The
most popular three test generation strategies are the following:

• The one-test-at-a-time strategy first introduced by Cohen et al.
(1997) in the Automatic Efficient Test Case Generator (AETG).

• The In-Parameter-Order (IPO) strategy introduced by Lei et al.
(2008).

• The strategy of searching for a whole covering array satisfying the
coverage criteria, which is used in methods such as EXACT (Yan
and Zhang, 2008) and CASA (Garvin et al., 2009, 2011).

In practical CT applications, SUT models usually have constraints
between parameters. Every test case must satisfy all parameter
constraints, or else it will be invalid and cannot be executed.
Ignoring these constraints will make some test cases invalid, and
the parameter combinations covered by the invalid test cases
may  not be tested. Thus some interaction faults supposed to be
detected by the test suite may  not be detected. Handling con-
straints is a difficult problem in CT generation. The performance
of existing methods degrades fast when the number of constraints
increases. Thus better constraint-handling techniques are in great
need.

The contributions of this paper are listed as follows: (1) we
propose a new one-test-at-a-time algorithm for CT test genera-
tion, which uses pseudo-Boolean optimization to generate each
new test case; (2) we have found that pursuing the maximum
coverage for each test case is uneconomic, and a possible bal-
ance point is to keep the approximation ratio in [0.8,0.9]; (3)
we propose a new self-adaptive mechanism to stop the opti-
mization process at a proper time when generating each test
case; (4) extensive experimental results show that our algorithm
works fine on existing benchmarks, and the constraint-handling
ability is better than existing approaches when the number of
constraints is large; and (5) we propose a method to translate
shielding parameters (a common type of constraints) into normal
constraints.

This paper is organized as follows: In Section 2, we introduce
some background knowledge of CT. In Section 3, we  introduce our
CT test generation algorithm. In Section 4, we perform experiments
to evaluate the algorithm’s performance and make discussions. In
Section 5 we discuss the related works. Finally, we  conclude our
work in Section 6.

1 A recent case study by Ghandehari et al. (2013) revealed that there are some
cases where failures are caused by parameter combinations of size greater than 6.
The  size of the failure-causing parameter combinations depends a lot on the model
and the nature of the SUT. However, CT is still applicable in many situations and has
been used by a lot of industrial practitioners.

2. Basic concepts and notations

We  first introduce some basic concepts used in this paper. An
SUT model is defined as follows:

Definition 1. An SUT model SUT(P, D) consists of a set of input
parameters P = {p1, p2, . . .,  pk}, and a function D mapping each
parameter pi to its value domain D(pi). k is called the number of
parameters, and si = |D(pi)| is called the level of parameter pi.

Definition 2. A test case t = (v1, v2, . . ., vk) is an assignment to all
input parameters, such that parameter pi takes the value of vi ∈
D(pi), for 1 ≤ i ≤ k.

Definition 3. A combination � = {(pi1 , vi1 ), (pi2 , vi2 ), . . .,  (pil
, vil

)}
is an assignment to parameters pi1 , pi2 , . . .,  pil

, such that parameter
pij

takes the value of vij
∈ D(pij

), for 1 ≤ j ≤ l. l is called the size of the
combination.

A test case t = (v1, v2, . . ., vk) covers combination � =
{(pi1 , v′

i1
), (pi2 , v′

i2
), . . .,  (pil

, v′
il
)}, if and only if for 1 ≤ j ≤ l, vij

= v′
ij
,

i.e. the values of pi,j in t and in � are identical.
A covering array is defined as follows:

Definition 4. A covering array CA(SUT(P, D), t) is an N × k array,
where SUT(P, D) is an SUT model, and t is the strength of the CA. Each
row of the array is a test case, and for 1 ≤ i ≤ k, the ith column corre-
sponds to the values of parameter pi in test cases. For any t columns
of the array, the N × t sub-array covers all value combinations of the
corresponding t parameters.

Note that the original definition of covering arrays requires that
all parameters have the same level, however most real SUT models
have parameters of different levels. In our paper, a covering array
is actually a mixed-level covering array, which allows parameters to
have different levels. A covering array CA(SUT(P, D), t) can also be
denoted as CA(N ; k, (s1, s2, . . .,  sk), t), which is a more traditional
form, where N is the number of rows (test cases).

The original definition of covering arrays requires all t-way
parameter combinations to be covered. However, there are many
cases where some parameters interact more (or less) often with
each other than with other parameters. If we enforce a global
strength, the covering strength needs to be set at the highest inter-
action level, which will greatly increase the number of test cases,
and a lot of resources will be wasted on testing unimportant param-
eter combinations. Cohen et al. (2003a,b) proposed the concept of
variable strength covering array (VCA), which allows the tester to
specify different covering strengths on different subsets of param-
eters. Here we  use a modified definition:

Definition 5. A variable strength t+ = {(P1, t1), (P2, t2), . . .,  (Pl, tl))}
is a set of coverage requirements, where Pi is a set of parameters,
and ti is a covering strength on Pi, for 1 ≤ i ≤ l. For 1 ≤ i ≤ l, coverage
requirement (Pi, ti) requires that all ti-way value combinations of
parameters in Pi be covered by the test suite.

When we  replace the universal strength t with a variable
strength t+, the covering array will be called a variable strength
covering array. (Note that the previous definition of the universal
strength t can be represented by a variable strength t+ = {(P, t)}.) If
a variable strength covering array meets covering requirement t+,
then for each pi = (Pi, ti) ∈ t+, the sub-array of parameters in pi is a
covering array of strength ti.

In the rest of this paper, we  use the term target combinations
to denote parameter combinations which need to be covered as
specified by the coverage requirements (covering strength).

Another important concept in CT is constraints.  Sometimes,
some parameters in the SUT model must conform to some restric-
tions, or else the test case will become invalid. Ignoring parameter
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