
The Journal of Systems and Software 98 (2014) 191–207

Contents lists available at ScienceDirect

The Journal of Systems and Software

j ourna l ho mepage: www.elsev ier .com/ locate / j ss

Generating combinatorial test suite using combinatorial optimization

Zhiqiang Zhanga,b,d,∗, Jun Yanc,d, Yong Zhaoe, Jian Zhanga

a State Key Laboratory of Computer Science, Institute of Software, Chinese Academy of Sciences, China
b University of Chinese Academy of Sciences, China
c Technology Center of Software Engineering, Institute of Software, Chinese Academy of Sciences, China
d State Key Laboratory of Rail Traffic Control and Safety, Beijing Jiaotong University, China
e Department of Computer Science, College of Engineering and Applied Science, University of Colorado at Colorado Springs, United States

a r t i c l e i n f o

Article history:
Received 8 November 2013
Received in revised form 13 April 2014
Accepted 1 September 2014
Available online 16 September 2014

Keywords:
Combinatorial testing
Test generation
Combinatorial optimization

a b s t r a c t

Combinatorial testing (CT) is an effective technique to test software with multiple configurable param-
eters. It is used to detect interaction faults caused by the combination effect of parameters. CT test
generation aims at generating covering arrays that cover all t-way parameter combinations, where t is
a given covering strength. In practical CT usage scenarios, there are usually constraints between param-
eters, and the performance of existing constraint-handling methods degrades fast when the number of
constraints increases.

The contributions of this paper are (1) we propose a new one-test-at-a-time algorithm for CT test
generation, which uses pseudo-Boolean optimization to generate each new test case; (2) we have found
that pursuing the maximum coverage for each test case is uneconomic, and a possible balance point
is to keep the approximation ratio in [0.8,0.9]; (3) we propose a new self-adaptive mechanism to stop
the optimization process at a proper time when generating each test case; (4) extensive experimental
results show that our algorithm works fine on existing benchmarks, and the constraint-handling ability
is better than existing approaches when the number of constraints is large; and (5) we propose a method
to translate shielding parameters (a common type of constraints) into normal constraints.

© 2014 Elsevier Inc. All rights reserved.

1. Introduction

Combinatorial testing (CT) is used to test software systems
with multiple configurable parameters. For real software systems,
the number of configurable parameters may be large, and testing
all possible configurations is not possible due to limited testing
resource. CT enables the tester to execute a small set of test cases
on the system, while achieving very high fault coverage.

The first step to apply CT is to build a parameterized model of
the system under test (SUT). The tester should first identify the
input parameters related to the test goal, i.e. parameters affecting
the system behavior which he or she is interested in during the
testing process. These parameters may include but not limited to
the following:

• Parameters of method calls.
• Parameters in system settings.

∗ Corresponding author at: State Key Laboratory of Computer Science, Institute of
Software, Chinese Academy of Sciences, China. Tel.: +86 10 62661625.

E-mail addresses: zhangzq@ios.ac.cn (Z. Zhang), yanjun@otcaix.iscas.ac.cn
(J. Yan), yzhao@uccs.edu (Y. Zhao), zj@ios.ac.cn (J. Zhang).

• A selection of replaceable system components installed in a test
environment, such as hardware devices, system libraries and
applications. These components are usually provided by multiple
third-party providers, and can have multiple versions.

After the input parameters are identified, the tester needs to
identify the value domain of each parameter. CT requires the value
domain of each input parameter to be a finite set of discrete values.
Typically, the number of possible values should not be too large,
or else the test suite size will be very large. If a parameter has too
many possible values, the tester should first select several repre-
sentative values using techniques such as equivalence partitioning,
and boundary value analysis.

Sometimes the parameters are not obvious. In these cases,
the tester needs to investigate the input domain, and build some
abstract parameters. Abstract parameters could be some properties
of the program input, such as the length of the input file, or the
type of a triangle (e.g. is it a right triangle, acute triangle or obtuse
triangle, etc.). Then the test cases will be abstract test cases, and the
tester needs to translate the abstract test cases into concrete test
cases before execution.

http://dx.doi.org/10.1016/j.jss.2014.09.001
0164-1212/© 2014 Elsevier Inc. All rights reserved.

dx.doi.org/10.1016/j.jss.2014.09.001
http://www.sciencedirect.com/science/journal/01641212
http://www.elsevier.com/locate/jss
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jss.2014.09.001&domain=pdf
mailto:zhangzq@ios.ac.cn
mailto:yanjun@otcaix.iscas.ac.cn
mailto:yzhao@uccs.edu
mailto:zj@ios.ac.cn
dx.doi.org/10.1016/j.jss.2014.09.001

192 Z. Zhang et al. / The Journal of Systems and Software 98 (2014) 191–207

After the modeling process, the SUT is abstracted as a parame-
terized black-box model consisting of several parameters, and each
parameter has a domain of several possible values.

From a black-box perspective, the CT fault model assumes
that failures are caused by parameter combinations. These fail-
ures are the consequence of interaction faults inside the black-box.
When several parameters take specific value combinations, a fail-
ure occurs. An investigation by Kuhn and Michael (2002) shows
that in some systems, failures are usually caused by combinations
of size 1–6 in some systems, and about 90% of the failures are caused
by parameter combinations of size no more than 3.1

The key idea of CT is that since most failures are caused by small
parameter combinations, if we have tested all small parameter
combinations, then most of the interaction faults can be detected.
In CT, we usually use a covering array (CA) as the test suite, which
covers these small parameter combinations.

There are a lot of researches on covering array generation. The
most popular three test generation strategies are the following:

• The one-test-at-a-time strategy first introduced by Cohen et al.
(1997) in the Automatic Efficient Test Case Generator (AETG).

• The In-Parameter-Order (IPO) strategy introduced by Lei et al.
(2008).

• The strategy of searching for a whole covering array satisfying the
coverage criteria, which is used in methods such as EXACT (Yan
and Zhang, 2008) and CASA (Garvin et al., 2009, 2011).

In practical CT applications, SUT models usually have constraints
between parameters. Every test case must satisfy all parameter
constraints, or else it will be invalid and cannot be executed.
Ignoring these constraints will make some test cases invalid, and
the parameter combinations covered by the invalid test cases
may not be tested. Thus some interaction faults supposed to be
detected by the test suite may not be detected. Handling con-
straints is a difficult problem in CT generation. The performance
of existing methods degrades fast when the number of constraints
increases. Thus better constraint-handling techniques are in great
need.

The contributions of this paper are listed as follows: (1) we
propose a new one-test-at-a-time algorithm for CT test genera-
tion, which uses pseudo-Boolean optimization to generate each
new test case; (2) we have found that pursuing the maximum
coverage for each test case is uneconomic, and a possible bal-
ance point is to keep the approximation ratio in [0.8,0.9]; (3)
we propose a new self-adaptive mechanism to stop the opti-
mization process at a proper time when generating each test
case; (4) extensive experimental results show that our algorithm
works fine on existing benchmarks, and the constraint-handling
ability is better than existing approaches when the number of
constraints is large; and (5) we propose a method to translate
shielding parameters (a common type of constraints) into normal
constraints.

This paper is organized as follows: In Section 2, we introduce
some background knowledge of CT. In Section 3, we introduce our
CT test generation algorithm. In Section 4, we perform experiments
to evaluate the algorithm’s performance and make discussions. In
Section 5 we discuss the related works. Finally, we conclude our
work in Section 6.

1 A recent case study by Ghandehari et al. (2013) revealed that there are some
cases where failures are caused by parameter combinations of size greater than 6.
The size of the failure-causing parameter combinations depends a lot on the model
and the nature of the SUT. However, CT is still applicable in many situations and has
been used by a lot of industrial practitioners.

2. Basic concepts and notations

We first introduce some basic concepts used in this paper. An
SUT model is defined as follows:

Definition 1. An SUT model SUT(P, D) consists of a set of input
parameters P = {p1, p2, . . ., pk}, and a function D mapping each
parameter pi to its value domain D(pi). k is called the number of
parameters, and si = |D(pi)| is called the level of parameter pi.

Definition 2. A test case t = (v1, v2, . . ., vk) is an assignment to all
input parameters, such that parameter pi takes the value of vi ∈
D(pi), for 1 ≤ i ≤ k.

Definition 3. A combination � = {(pi1 , vi1), (pi2 , vi2), . . ., (pil
, vil

)}
is an assignment to parameters pi1 , pi2 , . . ., pil

, such that parameter
pij

takes the value of vij
∈ D(pij

), for 1 ≤ j ≤ l. l is called the size of the
combination.

A test case t = (v1, v2, . . ., vk) covers combination � =
{(pi1 , v′

i1
), (pi2 , v′

i2
), . . ., (pil

, v′
il
)}, if and only if for 1 ≤ j ≤ l, vij

= v′
ij
,

i.e. the values of pi,j in t and in � are identical.
A covering array is defined as follows:

Definition 4. A covering array CA(SUT(P, D), t) is an N × k array,
where SUT(P, D) is an SUT model, and t is the strength of the CA. Each
row of the array is a test case, and for 1 ≤ i ≤ k, the ith column corre-
sponds to the values of parameter pi in test cases. For any t columns
of the array, the N × t sub-array covers all value combinations of the
corresponding t parameters.

Note that the original definition of covering arrays requires that
all parameters have the same level, however most real SUT models
have parameters of different levels. In our paper, a covering array
is actually a mixed-level covering array, which allows parameters to
have different levels. A covering array CA(SUT(P, D), t) can also be
denoted as CA(N ; k, (s1, s2, . . ., sk), t), which is a more traditional
form, where N is the number of rows (test cases).

The original definition of covering arrays requires all t-way
parameter combinations to be covered. However, there are many
cases where some parameters interact more (or less) often with
each other than with other parameters. If we enforce a global
strength, the covering strength needs to be set at the highest inter-
action level, which will greatly increase the number of test cases,
and a lot of resources will be wasted on testing unimportant param-
eter combinations. Cohen et al. (2003a,b) proposed the concept of
variable strength covering array (VCA), which allows the tester to
specify different covering strengths on different subsets of param-
eters. Here we use a modified definition:

Definition 5. A variable strength t+ = {(P1, t1), (P2, t2), . . ., (Pl, tl))}
is a set of coverage requirements, where Pi is a set of parameters,
and ti is a covering strength on Pi, for 1 ≤ i ≤ l. For 1 ≤ i ≤ l, coverage
requirement (Pi, ti) requires that all ti-way value combinations of
parameters in Pi be covered by the test suite.

When we replace the universal strength t with a variable
strength t+, the covering array will be called a variable strength
covering array. (Note that the previous definition of the universal
strength t can be represented by a variable strength t+ = {(P, t)}.) If
a variable strength covering array meets covering requirement t+,
then for each pi = (Pi, ti) ∈ t+, the sub-array of parameters in pi is a
covering array of strength ti.

In the rest of this paper, we use the term target combinations
to denote parameter combinations which need to be covered as
specified by the coverage requirements (covering strength).

Another important concept in CT is constraints. Sometimes,
some parameters in the SUT model must conform to some restric-
tions, or else the test case will become invalid. Ignoring parameter

Download English Version:

https://daneshyari.com/en/article/459534

Download Persian Version:

https://daneshyari.com/article/459534

Daneshyari.com

https://daneshyari.com/en/article/459534
https://daneshyari.com/article/459534
https://daneshyari.com

