

Contents lists available at ScienceDirect

Journal of Number Theory

A note on a refined version of Anderson-Brownawell-Papanikolas criterion

Chieh-Yu Chang a,b,*,1

ARTICLE INFO

Article history: Received 12 March 2008 Available online 31 December 2008 Communicated by Dinesh S. Thakur

MSC: primary 11J93, 11G09

Keywords:
ABP criterion
Linear independence
Algebraic independence

ABSTRACT

We give a refinement of the linear independence criterion over function fields developed by Anderson, Brownawell and Papanikolas [Greg W. Anderson, W. Dale Brownawell, Matthew A. Papanikolas, Determination of the algebraic relations among special Γ -values in positive characteristic, Ann. of Math. 160 (2004) 237–313]. As a consequence, a function field analogue of the Siegel–Shidlovskii theorem is derived.

© 2008 Elsevier Inc. All rights reserved.

1. Introduction

Let \mathbb{F}_q be the finite field of q elements with characteristic p. Let $A:=\mathbb{F}_q[\theta]$ be the polynomial ring in variable θ over \mathbb{F}_q , with fraction field $k:=\mathbb{F}_q(\theta)$. Define an absolute value $|\cdot|_{\infty}$ at the infinite place of k so that $|\theta|_{\infty}=q$. Let $k_{\infty}:=\mathbb{F}_q((\frac{1}{\theta}))$ be the ∞ -adic completion of k, let $\overline{k_{\infty}}$ be a fixed algebraic closure of k_{∞} , let \mathbb{C}_{∞} be the ∞ -adic completion of $\overline{k_{\infty}}$, let \overline{k} be the algebraic closure of k in \mathbb{C}_{∞} and let $\overline{\mathbb{F}_q}$ be the algebraic closure of \mathbb{F}_q in \overline{k} .

Let t be an independent variable of θ . Let $\mathbb T$ be the Tate algebra of power series in $\mathbb C_\infty[[t]]$ that are convergent on the closed unit disk in $\mathbb C_\infty$, and let $\mathbb L\subseteq\mathbb C_\infty((t))$ be the fraction field of $\mathbb T$. Let $\mathbb E$ be the subring of $\mathbb T$ consisting of power series that are everywhere convergent and whose coefficients

a National Center for Theoretical Sciences, Department of Mathematics, National Tsing Hua University, Hsinchu City 300, Taiwan, ROC

^b Department of Mathematics, National Central University, Chung-Li 32054, Taiwan, ROC

^{*} Address for correspondence: Mathematics Division, National Center for Theoretical Sciences, National Tsing Hua University, Hsinchu City 300, Taiwan, ROC.

E-mail address: cychang@math.cts.nthu.edu.tw.

¹ The author was supported by NCTS postdoctoral fellowship.

lie in a finite extension of k_{∞} . Finally for a Laurent series $f = \sum_i a_i t^i \in \mathbb{C}_{\infty}((t))$ and an integer $n \in \mathbb{Z}$, we set $f^{(n)} := \sum_i a_i^{q^n} t^i$ and extend the operation $f \mapsto f^{(n)}$ entrywise to matrices whose entries are in $\mathbb{C}_{\infty}((t))$.

In 2004, Anderson, Brownawell and Papanikolas [2] developed a criterion for linear independence over function fields, the so-called ABP criterion, to deal with the special values of the geometric Γ -function over A. As a break through, they proved that all the algebraic relations among those special Γ -values are explained by the standard functional equations. Now, we state the ABP criterion as the following:

Theorem 1.1 (Anderson–Brownawell–Papanikolas). Fix a matrix $\Phi = \Phi(t) \in \operatorname{Mat}_{\ell}(\bar{k}[t])$ such that $\det \Phi$ is a polynomial in t vanishing (if at all) only at $t = \theta$. Fix a (column) vector $\psi = \psi(t) \in \operatorname{Mat}_{\ell \times 1}(\mathbb{E})$ satisfying the functional equation $\psi^{(-1)} = \Phi \psi$. Evaluating ψ at $t = \theta$, thus obtaining a column vector $\psi(\theta) \in \operatorname{Mat}_{\ell \times 1}(\overline{k_{\infty}})$. For every (row) vector $\rho \in \operatorname{Mat}_{1 \times \ell}(\bar{k})$ such that $\rho \psi(\theta) = 0$ there exists a (row) vector $P = P(t) \in \operatorname{Mat}_{1 \times \ell}(\bar{k}[t])$ such that $P(\theta) = \rho$, $P(\theta) = 0$.

In other words, in the situation of Theorem 1.1, every \bar{k} -linear relation among entries of the specialization $\psi(\theta)$ is explained by a $\bar{k}[t]$ -linear relation among entries of ψ itself. The main theorem of this paper is the following:

Theorem 1.2. Fix a matrix $\Phi = \Phi(t) \in \operatorname{Mat}_{\ell}(\bar{k}[t])$ such that $\det \Phi$ is a polynomial in t satisfying $\det \Phi(0) \neq 0$. Fix a vector $\psi = [\psi_1(t), \dots, \psi_{\ell}(t)]^{\operatorname{tr}} \in \operatorname{Mat}_{\ell \times 1}(\mathbb{E})$ satisfying the functional equation $\psi^{(-1)} = \Phi \psi$. Let $\xi \in \bar{k}^{\times} \setminus \overline{\mathbb{F}_q}^{\times}$ satisfy

$$\det \Phi\left(\xi^{(-i)}\right) \neq 0 \quad \text{for all } i = 1, 2, 3, \dots$$

Then we have:

- (1) For every vector $\rho \in \operatorname{Mat}_{1 \times \ell}(\bar{k})$ such that $\rho \psi(\xi) = 0$ there exists a vector $P = P(t) \in \operatorname{Mat}_{1 \times \ell}(\bar{k}[t])$ such that $P(\xi) = \rho$, $P\psi = 0$.
- (2) $\operatorname{tr.deg}_{\bar{k}(t)} \bar{k}(t)(\psi_1(t), \dots, \psi_{\ell}(t)) = \operatorname{tr.deg}_{\bar{k}} \bar{k}(\psi_1(\xi), \dots, \psi_{\ell}(\xi)).$

In the situation of above theorem, we note that for any ψ in $\operatorname{Mat}_{\ell \times 1}(\mathbb{T})$ satisfying $\psi^{(-1)} = \Phi \psi$, by Proposition 3.1.3 of [2] the condition $\det \Phi(0) \neq 0$ implies $\psi \in \operatorname{Mat}_{\ell \times 1}(\mathbb{E})$.

Theorem 1.2(1) is an extension of ABP criterion. Theorem 1.2(2) is a consequence of Theorem 1.2(1). It can be thought of as a function field analogue of the Siegel–Shidlovskii theorem concerning *E*-functions satisfying linear differential equations:

Theorem 1.3 (Siegel–Shidlovskii, 1956). Let f_1, \ldots, f_n be a set of E-functions which satisfy the system of first-order equations

$$\frac{d}{dz} \begin{bmatrix} f_1 \\ \vdots \\ f_n \end{bmatrix} = B \begin{bmatrix} f_1 \\ \vdots \\ f_n \end{bmatrix},$$

where B is an $n \times n$ matrix with entries in $\overline{\mathbb{Q}}(z)$. Denote the common denominator of the entries of B by T(z). Then, for any $\xi \in \overline{\mathbb{Q}}$ such that $\xi T(\xi) \neq 0$,

$$\operatorname{tr.deg}_{\overline{\mathbb{Q}}(z)} \overline{\mathbb{Q}}(z, f_1(z), \dots, f_n(z)) = \operatorname{tr.deg}_{\overline{\mathbb{Q}}} \overline{\mathbb{Q}}(f_1(\xi), \dots, f_n(\xi)).$$

Download English Version:

https://daneshyari.com/en/article/4595438

Download Persian Version:

https://daneshyari.com/article/4595438

<u>Daneshyari.com</u>