
The Journal of Systems and Software 94 (2014) 129–150

Contents lists available at ScienceDirect

The Journal of Systems and Software

j ourna l ho mepage: www.elsev ier .com/ locate / j ss

Avoiding, finding and fixing spreadsheet errors – A survey
of automated approaches for spreadsheet QA

Dietmar Jannacha,∗, Thomas Schmitza, Birgit Hoferb, Franz Wotawab

a TU Dortmund, Germany
b TU Graz, Austria

a r t i c l e i n f o

Article history:
Received 20 November 2013
Received in revised form 25 February 2014
Accepted 18 March 2014
Available online 27 March 2014

Keywords:
Spreadsheet
Quality assurance
Tool support

a b s t r a c t

Spreadsheet programs can be found everywhere in organizations and they are used for a variety of pur-
poses, including financial calculations, planning, data aggregation and decision making tasks. A number
of research surveys have however shown that such programs are particularly prone to errors. Some rea-
sons for the error-proneness of spreadsheets are that spreadsheets are developed by end users and that
standard software quality assurance processes are mostly not applied. Correspondingly, during the last
two decades, researchers have proposed a number of techniques and automated tools aimed at sup-
porting the end user in the development of error-free spreadsheets. In this paper, we provide a review
of the research literature and develop a classification of automated spreadsheet quality assurance (QA)
approaches, which range from spreadsheet visualization, static analysis and quality reports, over test-
ing and support to model-based spreadsheet development. Based on this review, we outline possible
opportunities for future work in the area of automated spreadsheet QA.

© 2014 Elsevier Inc. All rights reserved.

1. Introduction

Spreadsheet applications, based, e.g., on the widespread
Microsoft Excel software tool, can nowadays be found almost
everywhere and at all levels of organizations (Panko and Port,
2012). These interactive computer applications are often developed
by non-programmers – that is, domain or subject matter experts –
for a number of different purposes including financial calculations,
planning and forecasting, or various other data aggregation and
decision making tasks.

Spreadsheet systems became popular during the 1980s and
represent the most successful example of the End-User Program-
ming paradigm. Their main advantage can be seen in the fact that
they allow domain experts to build their own supporting software
tools, which directly encode their domain expertise. Such tools are
usually faster available than other business applications, which
have to be developed or obtained via corporate IT departments
and are subject to a company’s standard quality assurance (QA)
processes.

Very soon, however, it became obvious that spreadsheets – like
any other type of software – are prone to errors, see, e.g., the early

∗ Corresponding author at: TU Dortmund, 44221 Dortmund, Germany.
Tel.: +49 231 755 7272; fax: +49 231 755 7269.

E-mail address: dietmar.jannach@tu-dortmund.de (D. Jannach).

paper by Creeth (1985) or the report by Ditlea (1987), which were
published in 1985 and 1987, respectively. More recent surveys on
error rates report that in many studies on spreadsheet errors at
least one fault was found in every single spreadsheet that was ana-
lyzed (Panko, 1998). Since in reality even high-impact business
decisions are made, which are at least partially based on faulty
spreadsheets, such errors can represent a considerable risk to an
organization1.

Overall, empowering end users to build their own tools has
some advantages, e.g., with respect to flexibility, but also intro-
duces additional risks, which is why Panko and Port call them both
“dark matter (and energy) of corporate IT” (Panko and Port, 2012).
In order to minimize these risks, researchers in different disci-
plines have proposed a number of approaches to avoid, detect or fix
errors in spreadsheet applications. In principle, several approaches
are possible to achieve this goal, beginning with better education
and training of the users, over organizational and process-related
measures such as mandatory reviews and audits, to better tool sup-
port for the users during the spreadsheet development process. In
this paper, we focus on this last type of approaches, in which the
spreadsheet developer is provided with additional software tools

1 See http://www.eusprig.org/horror-stories.htm for a list of real-world stories or
the recent article by Herndon et al. (2013) who found critical spreadsheet formula
errors in the often-cited economic analysis of Reinhart and Rogoff (2010).

http://dx.doi.org/10.1016/j.jss.2014.03.058
0164-1212/© 2014 Elsevier Inc. All rights reserved.

dx.doi.org/10.1016/j.jss.2014.03.058
http://www.sciencedirect.com/science/journal/01641212
http://www.elsevier.com/locate/jss
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jss.2014.03.058&domain=pdf
mailto:dietmar.jannach@tu-dortmund.de
http://www.eusprig.org/horror-stories.htm
dx.doi.org/10.1016/j.jss.2014.03.058

130 D. Jannach et al. / The Journal of Systems and Software 94 (2014) 129–150

and mechanisms during the development process. Such tools can
for example help the developer locate potential faults more effec-
tively, organize the test process in a better structured way, or guide
the developer to better spreadsheet designs in order to avoid faults
in the first place. The goals and contributions of this work are (A)
an in-depth review of existing works and the state-of-the-art in the
field, (B) a classification framework for approaches to what we term
“automated spreadsheet QA”, and (C) a corresponding discussion of
the limitations of existing works and an outline of perspectives for
future work in this area.

This paper is organized as follows. In Section 2, we will define
the scope of our research, introduce the relevant terminology and
discuss the specifics of typical spreadsheet development processes.
Section 3 contains our classification scheme for approaches to auto-
mated spreadsheet QA. In Sections 4–9, we will discuss the main
ideas of typical works in each category and we will report how
the individual proposals were evaluated. Section 10 reviews the
current research practices with respect to evaluation aspects. In
Section 11, we point out perspectives for future works and Sec-
tion 12 summarizes this paper.

2. Preliminaries

Before discussing the proposed classification scheme in detail,
we will first define the scope of our analysis and sketch our
research method. In addition, we will briefly discuss differences
and challenges of spreadsheet QA approaches in comparison with
tool-supported QA approaches for traditional imperative programs.

2.1. Scope of the analysis, research method, terminology

Spreadsheets are a subject of research in different disciplines
including the fields of Information Systems (IS) and Computer Sci-
ence (CS) but also fields such as Management Accounting or Risk
Management, e.g., Creeth (1985) or Galletta et al. (1993).

Scope. In our work, we adopt a Computer Science and Software
Engineering perspective, focus on tool support for the spreadsheet
development process and develop a classification of automated
spreadsheet QA approaches. Examples for such tools could be those
that help the user locate faults, e.g., based on visualization tech-
niques or by directly pointing them to faulty cells, or tools that help
the user avoid making faults in the first place, e.g., by supporting
complex refactoring work. Spreadsheet error reduction techniques
from the IS field, see, e.g., Thorne (2014), and approaches that are
mainly based on “manual” tasks like auditing or code inspection
will thus not be in the focus of our work.

Research on spreadsheets for example in the field of Infor-
mation Systems often covers additional, more user-related, or
fundamental aspects such as error types, error rates and human
error research in general, the user interface, cognitive effort and
acceptance issues of tools, user over-confidence, as well as method-
ological questions regarding the empirical evaluation of systems,
see, e.g., Reinhardt and Pillay (2004), Galletta et al. (1996), Powell
et al. (2008), Howe and Simkin (2006), Olson and Nilsen (1987),
Panko (1998). Obviously, these aspects and considerations should
be the basis when designing an automated spreadsheet QA tool
that should be usable and acceptable by end users. In our work
and classification, we however concentrate more on the provided
functionality and the algorithmic approaches behind the various
tools. We will therefore discuss the underlying assumptions for
each approach, e.g., with respect to user acceptance or evaluation,
only as they are reported in the original papers. Still, in order to
assess the overall level of research rigor in the field, we will report
for each class of approaches how the individual proposals were
evaluated or validated.

These insights will be summarized and reviewed in Section 10.
In this section, we will also look at the difficulties of empirically
evaluating the true value of spreadsheet error reduction techniques
according to the literature from the IS field.

Regarding tool support in commercial spreadsheet environ-
ments, we will briefly discuss the existing functionality of MS Excel
and comparable systems in the different sections. Specialized com-
mercial auditing add-ons to MS Excel usually include a number
of QA tools. As our work focuses more on advanced algorithmic
approaches to spreadsheet QA, we see the detailed analysis of cur-
rent commercial tools to be beyond the scope of this paper. Finally,
we will also not cover fault localization or avoidance techniques for
the imperative programming extensions that are typically part of
modern spreadsheet environments.

Research method. For creating our survey, we conducted an
extensive literature research. Papers about spreadsheets are pub-
lished in a variety of journals and conference proceedings.
However, there exists no publication outlet which is only concerned
with spreadsheets, except maybe for the application-oriented
EuSpRIG conference series.2 In our research, we therefore followed
an approach which consists both of a manual inspection of rele-
vant journals and conference proceedings as well as searches in
the digital libraries of ACM and IEEE. Typical outlets for papers
on spreadsheets which were inspected manually included both
broad Software Engineering conferences and journals such as
ICSE, ACM TOSEM, or IEEE TSE. At the same time, we reviewed
publications at more focused events such as ICSM or the IEEE
Symposium on Visual Languages and Human-Centric Computing
(VL/HCC). In addition, major IS journals and events such as Infor-
mation Systems Research, ACM TOIS or ICIS were considered in our
research.

When searching the digital libraries, we started by looking for
papers containing the term “spreadsheet” in the title or abstract.
From the 400 to 500 results returned by the search engines of the
libraries, we manually inspected the abstracts. Provided their scope
was relevant for our research, we categorized them according to the
categorization framework described in Section 3, and followed the
relevant references mentioned in the articles.

Terminology. Regarding the terminology used in the paper, we
will use the terms “spreadsheet”, “spreadsheet application”, or
“spreadsheet program” more or less interchangeably as often done
in the literature. When we refer to the underlying software sys-
tem to create spreadsheets (e.g., Microsoft Excel), we will use the
term “spreadsheet environment” or “spreadsheet tool”. In some
papers, the term “form-based visual languages” is used (Rothermel
et al., 1998) to describe the more general family of such systems.
In our work, we will however rely on the more widespread term
“spreadsheet”.

There are a number of definitions of the terms “error”, “fault”,
and “failure” in the literature. According to IEEE standards for Soft-
ware Engineering an “error” is a misapprehension on side of the one
developing a spreadsheet caused by a mistake or misconception
occurring in the human thought process. A “fault” is the manifes-
tation of an “error” within a spreadsheet which may be causing a
“failure”. A “failure” is the deviation of the observed behavior of
the spreadsheet from the expectations. In the literature on spread-
sheets, in particular the terms “fault” and “error” are often used
in an interchangeable manner. Surveys and taxonomies of spread-
sheet problems like (Panko and Halverson, 1996; Rajalingham et al.,
2001), or (Panko and Aurigemma, 2010), for example, more or less
only use the term “error”. In our review, we will – in order to be

2 http://www.eusprig.org.

http://www.eusprig.org

Download English Version:

https://daneshyari.com/en/article/459564

Download Persian Version:

https://daneshyari.com/article/459564

Daneshyari.com

https://daneshyari.com/en/article/459564
https://daneshyari.com/article/459564
https://daneshyari.com

