
The Journal of Systems and Software 94 (2014) 161–185

Contents lists available at ScienceDirect

The Journal of Systems and Software

j ourna l ho mepage: www.elsev ier .com/ locate / j ss

A systematic review of software architecture visualization techniques

Mojtaba Shahina,b, Peng Lianga,c,∗, Muhammad Ali Babard

a State Key Lab of Software Engineering, School of Computer, Wuhan University, China
b Department of Computer Engineering, Neyriz Branch, Islamic Azad University, Iran
c Department of Computer Science, VU University Amsterdam, Netherlands
d CREST – The Centre for Research on Engineering Software Technologies, The University of Adelaide, Australia

a r t i c l e i n f o

Article history:
Received 31 August 2013
Received in revised form 4 February 2014
Accepted 22 March 2014
Available online 30 March 2014

Keywords:
Software architecture
Software architecture visualization
Visualization techniques

a b s t r a c t

Context: Given the increased interest in using visualization techniques (VTs) to help communicate and
understand software architecture (SA) of large scale complex systems, several VTs and tools have been
reported to represent architectural elements (such as architecture design, architectural patterns, and
architectural design decisions). However, there is no attempt to systematically review and classify the
VTs and associated tools reported for SA, and how they have been assessed and applied.
Objective: This work aimed at systematically reviewing the literature on software architecture visualiza-
tion to develop a classification of VTs in SA, analyze the level of reported evidence and the use of different
VTs for representing SA in different application domains, and identify the gaps for future research in the
area.
Method: We used systematic literature review (SLR) method of the evidence-based software engineering
(EBSE) for reviewing the literature on VTs for SA. We used both manual and automatic search strategies
for searching the relevant papers published between 1 February 1999 and 1 July 2011.
Results: We selected 53 papers from the initially retrieved 23,056 articles for data extraction, analysis,
and synthesis based on pre-defined inclusion and exclusion criteria. The results from the data analysis
enabled us to classify the identified VTs into four types based on the usage popularity: graph-based,
notation-based, matrix-based, and metaphor-based VTs. The VTs in SA are mostly used for architecture
recovery and architectural evolution activities. We have also identified ten purposes of using VTs in SA.
Our results also revealed that VTs in SA have been applied to a wide range of application domains, among
which “graphics software” and “distributed system” have received the most attention.
Conclusion: SA visualization has gained significant importance in understanding and evolving software-
intensive systems. However, only a few VTs have been employed in industrial practice. This review has
enabled us to identify the following areas for further research and improvement: (i) it is necessary to per-
form more research on applying visualization techniques in architectural analysis, architectural synthesis,
architectural implementation, and architecture reuse activities; (ii) it is essential to pay more attention
to use more objective evaluation methods (e.g., controlled experiment) for providing more convincing
evidence to support the promised benefits of using VTs in SA; (iii) it is important to conduct industrial
surveys for investigating how software architecture practitioners actually employ VTs in architecting
process and what are the issues that hinder and prevent them from adopting VTs in SA.

© 2014 Elsevier Inc. All rights reserved.

1. Introduction

With increasing size and complexity of software-intensive
systems, the role of software architecture (SA) as a means of
understanding and managing large-scale software intensive

∗ Corresponding author at: State Key Lab of Software Engineering, School of Com-
puter, Wuhan University, China. Tel.: +86 27 68776137; fax: +86 27 68776027.

E-mail address: liangp@whu.edu.cn (P. Liang).

systems has been increasingly becoming important. The high
level design description of a large system can help a system’s
stakeholders to understand and reason about the designed archi-
tecture with regards to architecturally significant requirements
(ASRs) of a software-intensive system (Bass et al., 2012). SA
community has been developing various approaches, techniques,
and tools for improving software architecture communication
and understanding among all the key stakeholders of large-scale
software-intensive systems. One of the increasingly popular
ways of making software architecture design decisions and their

http://dx.doi.org/10.1016/j.jss.2014.03.071
0164-1212/© 2014 Elsevier Inc. All rights reserved.

dx.doi.org/10.1016/j.jss.2014.03.071
http://www.sciencedirect.com/science/journal/01641212
http://www.elsevier.com/locate/jss
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jss.2014.03.071&domain=pdf
mailto:liangp@whu.edu.cn
dx.doi.org/10.1016/j.jss.2014.03.071

162 M. Shahin et al. / The Journal of Systems and Software 94 (2014) 161–185

rationale easily understandable is visualizing SA (Shahin and
Liang, 2010; de Boer et al., 2009; López et al., 2009; Lee and
Kruchten, 2008). Visualization in computer graphics is a technique
for creating images, diagrams, or animations to communicate
information, which may not be easy to describe and understand
in other formats, such as textual (Spence, 2000). Visualization
transfers information into visual forms and enhances information
understanding in software development (Diehl, 2007).

Software visualization is defined as visual representation of arti-
facts (such as requirements, design, and program code) related to
software and its development process (Diehl, 2007). The main moti-
vation for using software visualization is to help stakeholders to
understand and comprehend different aspects of software systems
during software development process and reduce the cost of soft-
ware evolution (Diehl, 2007; Gallagher et al., 2008). SA visualization
is defined as a visual representation of architectural models and
some or all of the architectural design decisions about the mod-
els (Taylor et al., 2009). The importance of visualizing SA has been
extensively investigated as SA visualization can be of interest to
various stakeholders such as architects, developers, testers, and
project managers (Gallagher et al., 2008; Sharafi, 2011; Telea et al.,
2010; Shahin and Liang, 2010). SA visualization, e.g., decomposi-
tion of a software system’s architecture into layers, components,
or slices in a structural viewpoint, is critical in understanding
and communicating the architecture to a variety of project stake-
holders (Cleland-Huang et al., 2013). Due to the recognition of
the importance of visualizing SA, an increasing amount of liter-
ature describing SA visualization approaches and tools has been
published through diverse venues (Gallagher et al., 2008; Sharafi,
2011; Telea et al., 2010). However, there has been no dedicated
effort to systematically identify and select, and rigorously analyze
and synthesize the SA visualization literature. In order to fill this
gap, we decided to carry out a systematic literature review (SLR)
(Kitchenham and Charters, 2007) of the SA visualization.

This article reports the design, execution, and findings of the SLR
that aimed at systematically identifying, selecting, and summariz-
ing a comprehensive set of SA visualization techniques, associated
tools, and the supporting evidence published in the peer-reviewed
literature. This SLR enabled us to enumerate a comprehensive set
of papers describing SA visualization techniques and tools in order
to reveal the key motivators for their development, their evolution-
ary paths, foundational principles, and assessment mechanisms.
For this review, we have systematically identified and rigorously
reviewed 53 relevant papers and synthesized the data extracted
from those papers in order to answer a set of research questions
that had motivated this review. We assert that the results from this
SLR can provide important benefits to researchers and practitioners
from both software architecture as well as software visualiza-
tion communities. This review can enable them to gain a better
understanding of the available SA visualization techniques, their
suitability for different architecting activities, the level of evidence
reported for each of them, and the gaps that need further research
in this area. The two significant contributions of this paper to the
software architecture visualization body of knowledge are:

1. It reports the design, execution, and results of a review aimed
at systematically identifying a comprehensive set of relevant
papers on SA visualization techniques based on pre-defined
selection criteria and rigorously analyzing and synthesizing the
reported techniques, associate tools, and reported evidence in
an easily accessible format.

2. It structures and classifies the reviewed SA visualization tech-
niques and tools, and the available evidence using different
formats that are expected to be useful for practitioners interested
in using visualization for communicating and understanding
SA design and design decisions. The findings can be used as

an evidence-based guide to select appropriate SA visualization
techniques and tools based on the required suitability for differ-
ent activities of the software architecting process. The findings
also identify the issues relevant to researchers who are inter-
ested in knowing the state-of-the-art of and the areas of future
research in SA visualization.

1.1. Background and related work

Software architecture has emerged as an important area of soft-
ware engineering research and practice over the last two decades.
The increasing size of, complexity of, and demand for quality in
software systems are some of the most important factors that have
resulted in sustained interests in SA research and practice. It is
widely recognized that a high level design description can play
an important role in successfully understanding and managing
large and complex software systems (Bass et al., 2012). SA com-
munity has developed several methods, approaches, and tools to
help understand and reason about high level architecture design.
Software architecture can be described and viewed from multiple
perspectives. Two of the most commonly used perspectives of SA
are architectural viewpoint and architecting process perspective.

There are two distinct viewpoints on SA, structural and deci-
sional (Poort and van Vliet, 2012): the structural viewpoint
expresses SA with components and connectors and considers it as
a high-level software structure of a system (Bass et al., 2012). This
viewpoint mainly focuses on the end products (e.g., components
and connectors) of software architecting process. The decisional
viewpoint considers decisions made during architecting as the first
class entities and defines SA as a set of design decisions, including
their rationale (Jansen and Bosch, 2005). In this SLR, both view-
points of SA have been considered as visualization techniques can
be used to support both kinds of viewpoints of SA. The struc-
tural elements (e.g., components and connectors) and decisional
elements (e.g., decisions) are generally termed as “architectural ele-
ments” or “architectural entities” that are interchangeably used in
this paper.

Architecting is a process of conceiving, defining, expressing, doc-
umenting, communicating, certifying proper implementation of,
maintaining and improving an architecture throughout a system’s
life cycle (ISo, 2011). From an architecting process perspective,
software architecting is composed of a set of general and specific
activities (Li et al., 2013; Hofmeister et al., 2007), which can be sup-
ported by various visualization techniques and tools. The specific
architecting activities cover the entire architecture lifecycle and
the general architecting activities provide support to achieve the
goals of the specific activities of software architecting. For exam-
ple, architectural evolution, as a specific architecting activity, copes
with correcting faults, responding to new changes, and implemen-
ting new requirements in architecture. Architecture recovery, as a
general architecting activity, examines existing available sources
of a system (such as implementation and documentation of a
system) to uncover and extract architecture design and design
decisions. Architecture recovery can support architecture evolution
by recovering the architecture design and design decisions when
architecture documentation is not well documented or unavailable,
or architectural design decisions have been lost.

Through this review, we are interested to know how various
visualization techniques can facilitate these general and specific
architecting activities. It is generally considered that SA visu-
alization techniques can be used to support any stage of the
software architecting process, i.e., analyzing, synthesizing, evalu-
ating, implementing, and evolving architecture (Telea et al., 2010).
In a decisional viewpoint, visualization of architectural design
decisions (ADDs) can improve the understanding of ADDs and
their rationale, and this kind of understanding becomes more

Download English Version:

https://daneshyari.com/en/article/459566

Download Persian Version:

https://daneshyari.com/article/459566

Daneshyari.com

https://daneshyari.com/en/article/459566
https://daneshyari.com/article/459566
https://daneshyari.com

