
The Journal of Systems and Software 94 (2014) 186–201

Contents lists available at ScienceDirect

The Journal of Systems and Software

j our na l ho me page: www.elsev ier .com/ locate / j ss

Architectural reliability analysis of framework-intensive applications:
A web service case study

M. Rahmani, A. Azadmanesh ∗, H. Siy
College of Information Science and Technology, University of Nebraska-Omaha, Omaha, NE 68182, USA

a r t i c l e i n f o

Article history:
Received 25 September 2012
Received in revised form 19 January 2014
Accepted 23 March 2014
Available online 4 April 2014

Keywords:
Architecture-based software reliability
Petri Net
Service oriented architecture

a b s t r a c t

A novel methodology for modeling the reliability and performance of web services (WSs) is presented. To
present the methodology, an experimental environment is developed in house, where WSs are treated
as atomic entities but the underlying middleware is partitioned into layers. WSs are deployed in JBoss
AS. Web service requests are generated to a remote middleware on which JBoss runs, and important
performance parameters under various configurations are collected. In addition, a modularized simu-
lation model in Petri net is developed from the architecture of the middleware and run-time behavior
of the WSs. The results show that (1) the simulation model provides for measuring the performance
and reliability of WSs under different loads and conditions that may be of great interest to WS design-
ers and the professionals involved; (2) configuration parameters have substantial impact on the overall
performance; (3) the simulation model provides a basis for aggregating the modules (layers), nullifying
modules, or to include additional aspects of the WS architecture; and (4) the model is beneficial to predict
the performance of WSs for those cases that are difficult to replicate in a field study.

© 2014 Elsevier Inc. All rights reserved.

1. Introduction

Internet globalization has provided the unprecedented opportu-
nity for enterprises to develop and deliver electronic services such
as online shopping and banking services. These services, called web
services (WSs) are becoming a promising technology for building
distributed and complex systems. World Wide Web Consortium
(W3C) defines a web service a software system designed to sup-
port interoperable machine-to-machine interaction over a network
(Booth, 2004a).

WSs are commonly delivered through an infrastructure based
on the Service-Oriented Architecture (SOA) (Booth, 2004b). WSs
are deployed using an application server (AS), part of the soft-
ware ecosystem comprising the middleware connecting service
requesters to providers. The middleware is a complex and inter-
twined combination of various libraries, components and their
interfaces, forming an application framework upon which web ser-
vices can be deployed. Because the majority of code execution
of a web service normally occurs within the components of this
framework, web applications are a type of framework-intensive
applications (Dufour et al., 2007). Due to the growing complexity of

∗ Corresponding author. Tel.: +1 402 554 3976; fax: +1 402 554 3284.
E-mail address: azad@unomaha.edu (A. Azadmanesh).

such framework-intensive applications as well as society’s increas-
ing dependence on their services, the reliability of these systems
has become critical. In this study, WSs are treated as atomic entities
but the middleware is partitioned into layers. WSs are developed
in house and the application server (AS) considered is JBoss AS
(JBoss, 2012). An experimental model is developed that anchors
the analytical results to empirical observations. In parallel, a simu-
lation model is developed that provides an operational view of the
behavior and inner working of the overall distributed system. The
architecture of the simulation model follows a hierarchical struc-
ture, modularized in accordance to the layers and their interactions.
As the web services are often executed in a complex and distributed
environment, the modularized approach enables a user to observe
and investigate the performance of the entire system under vari-
ous conditions. The architecture-based analysis, which takes into
account the components, e.g. middleware layers, and their interac-
tions, is a form of white-box analysis. In contrast, most approaches
to WSs analyses are monolithic in that the entire system is treated
as a black-box.

Although this study complements some of the research work in
literature (Cao et al., 2003; Souza et al., 2006; Xiao and Dohi, 2010;
Wells et al., 2001), the contribution of this study can be summarized
as follows:

• One cannot underestimate the importance of middleware in
the overall reliability of the applications. This study conducts

http://dx.doi.org/10.1016/j.jss.2014.03.070
0164-1212/© 2014 Elsevier Inc. All rights reserved.

dx.doi.org/10.1016/j.jss.2014.03.070
http://www.sciencedirect.com/science/journal/01641212
http://www.elsevier.com/locate/jss
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jss.2014.03.070&domain=pdf
mailto:azad@unomaha.edu
dx.doi.org/10.1016/j.jss.2014.03.070

M. Rahmani et al. / The Journal of Systems and Software 94 (2014) 186–201 187

performance analysis of the middleware based on its major
architectural layers. To the best of our knowledge there
is no solid architecture-based reliability analysis of the
middleware.

• A large number of studies consider theoretical analysis with-
out investigating the real-world applications and tackling the
challenges of complex software systems (Cheung, 1980; Singh
et al., 2001; Zhong and Qi, 2006). Since many of these approaches
validate their models using simulation-based analysis or sim-
ple applications, the applicability of these approaches for
real-world complex software systems is unknown. This study
uses a combination of analytical, experimental, and simulation
models.

• Configuration errors occur when operators define incorrect sett-
ings for system parameters, e.g., specifying insufficient number
of threads to service user requests entering the web server.
Configuration parameters play an important role in the perfor-
mance of web services, but not much attention has been made
in the failure analysis of web services caused by these error
types. Research in Pertet and Narasimhan (2005) has shown
misconfiguration of web-based and framework-intensive soft-
ware can contribute to nearly forty percent of failures in web
applications. This study pays a close attention to these types of
failures.

• The software system under study by a number of research papers
is often simple and rudimentary (Cao et al., 2003; Singh et al.,
2001; Souza et al., 2006; Wells et al., 2001; Zhong and Qi, 2006).
In addition, the common model presentation used is Markov
chains, which may lead to state explosion for large systems.
Instead, this study presents an architectural model using a spe-
cific type of Petri Nets called Stochastic Activity Network (SAN)
(Sanders and Meyer, 2001). The model is simple enough to
build, which is based on the static and dynamic code analy-
sis of the middleware. Static analysis is used to determine the
main layers and configuration parameters of the middleware.
Dynamic analysis assists in the extraction of the timing informa-
tion of the layers and the call-graph of a particular web service
execution.

The multilayer and the reliability approaches proposed in this
study have the following advantages:

• The application server contains a large number of internal appli-
cations, utilities, and enormous number of Java classes. The
proposed multilayer approach offers a more manageable model
in order to analyze the reliability of a web service.

• As failure rate of each layer and configuration parameters are esti-
mated separately, analyzing the reliability of the system would
be more insightful to better understand the effect of each layer
on the overall reliability of the system.

• The analytical, experimental and the simulation-based models
can validate each other to ensure the correctness of the results.
Hence, the simulation model can be used to test the performance
of the web environment under various conditions.

The rest of the paper is organized as follows. Section 2 pro-
vides some background on web service reliability and prior
approaches to reliability modeling. Section 3 describes the three
proposed models. Section 4 provides the performance results
of the three models and their comparison. Section 5 shows
how system reliability might be characterized based on inputs
from the simulation model. Section 6 provides some con-
cluding remarks and some avenues for extending the current
research.

2. Background and literature review

WSs follow a client/server paradigm, where the middleware
running on a server connects clients to the desired WSs. The mid-
dleware is formed by multiple layers. The application server layer,
e.g. JBoss AS, is the main engine of the middleware that provides
the environment for running applications regardless of what the
application might be. One of the major tasks of the server is to hide
the intrinsic details of common programming tasks such as secu-
rity, persistent storage, and queuing requests, so that application
developers can concentrate on the business logic rather than on
periphery aspects. It is through this layer that web services can
communicate with other layers. The web server layer, e.g. Apache
(Apache, 2012), is the front end software that delivers requests to
the application server on which web services are deployed. The
database layer stores data relevant to web services.

2.1. Web service reliability

The reliability of a software system is a probabilistic measure of
correctly delivering services during a period of time. The measured
reliability depends on fault types considered, such as crash faults,
software faults, exception faults, time-outs, resource exhaustion,
misconfiguration of the underlying shared resources, etc. For exam-
ple, one may want to obtain the reliability of the system based only
on resource exhaustion. On the other, as fault sources are often
numerous, to make reliability analysis manageable, attempts can
be made to categorize the faults based on their impacts rather
than their origin. For instance, an expected message not received
in the client side might be due to a fault in the network, or a
fault in the server side software component or because the con-
figuration parameters in the middleware are not set correctly.
So the spectrum of faults with the impact of not receiving mes-
sages can be categorized as omission faults. In general, a possible
categorization of faults based on their impacts that collectively
captures all kinds of faults is timing faults, omission faults, and arbi-
trary faults (Azadmanesh et al., 2008; Srinivasan and Azadmanesh,
2013). A timing fault occurs when an expected correct message is
not received within a predetermined period of time. An omission
fault happens when no response is received. Finally, an arbitrary
fault is the one that behaves in any manner other than timing or
omission faults. For instance an arbitrary fault can cause an erro-
neous value to be received or when two conflicting values are
transmitted as response to the same input values. This study is
mostly concerned with the timing (time-out) faults of web ser-
vices. More specifically, this study follows the definition presented
by Hwang et al. (2008), which defines the web service reliability as
“the probability the web service successfully responds within a rea-
sonable period of time”. This form of timing faults can be caused by
many factors such as delays in the middleware, inadequate setting
of configuration parameters, or network problems. A study (Pertet
and Narasimhan, 2005), which used information from Google, IBM,
Intel, Microsoft, Hewlett-Packard, Oracle, and Sun, indicates that
the main cause of failures in web applications is not logical or com-
putational errors. Rather, the most frequent causes of failure are
due to system overload, configuration errors, resource exhaustion,
human/operator errors, and lack of resource sharing. Furthermore,
to the best of our knowledge, many architecture-based reliabil-
ity studies do not consider these failures (Grassi, 2005; Zhong
and Qi, 2006). Although some studies (Grassi and Patella, 2006;
Grassi, 2005) claim that architecture-based reliability approaches
can be applied to service-oriented computing applications, no solid
work exists to confirm this. For instance, Grassi (2005) presents an
approach to the reliability prediction of an assembly of services
that uses the architecture-based reliability analysis. The approach
does not provide a definition of failure in a service-oriented

Download English Version:

https://daneshyari.com/en/article/459567

Download Persian Version:

https://daneshyari.com/article/459567

Daneshyari.com

https://daneshyari.com/en/article/459567
https://daneshyari.com/article/459567
https://daneshyari.com

