Contents lists available at ScienceDirect

Journal of Pure and Applied Algebra

www.elsevier.com/locate/jpaa

# Conditions for the Yoneda algebra of a local ring to be generated in low degrees $\stackrel{\bigstar}{\Rightarrow}$

Justin Hoffmeier<sup>a</sup>, Liana M. Şega<sup>b,\*</sup>

 <sup>a</sup> Department of Mathematics and Statistics, Northwest Missouri State University, Maryville, MO 64468, USA
<sup>b</sup> Department of Mathematics and Statistics, University of Missouri, Kansas City, MO 64110, USA

#### ARTICLE INFO

Article history: Received 27 March 2014 Received in revised form 20 January 2016 Available online 16 June 2016 Communicated by S. Iyengar

#### ABSTRACT

The powers  $\mathfrak{m}^n$  of the maximal ideal  $\mathfrak{m}$  of a local Noetherian ring R are known to satisfy certain homological properties for *large* values of n. For example, the homomorphism  $R \to R/\mathfrak{m}^n$  is Golod for  $n \gg 0$ . We study when such properties hold for *small* values of n, and we make connections with the structure of the Yoneda Ext algebra, and more precisely with the property that the Yoneda algebra of R is generated in degrees 1 and 2. A complete treatment of these properties is pursued in the case of compressed Gorenstein local rings.

© 2016 Elsevier B.V. All rights reserved.

## 0. Introduction

Let  $(R, \mathfrak{m}, k)$  be a *local ring*, that is, a commutative noetherian ring R with unique maximal ideal  $\mathfrak{m}$  and  $k = R/\mathfrak{m}$ . For  $n \ge 1$  we let  $\nu_n \colon \mathfrak{m}^n \to \mathfrak{m}^{n-1}$  denote the canonical inclusion and for each  $i \ge 0$  we consider the induced maps

 $\operatorname{Tor}_{i}^{R}(\nu_{n},k) \colon \operatorname{Tor}_{i}^{R}(\mathfrak{m}^{n},k) \to \operatorname{Tor}_{i}^{R}(\mathfrak{m}^{n-1},k).$ 

Using the terminology of [2], we say that  $\mathfrak{m}^n$  is a *small* submodule of  $\mathfrak{m}^{n-1}$  if  $\operatorname{Tor}_i^R(\nu_n, k) = 0$  for all  $i \ge 0$ . This condition implies that the canonical projection  $\rho_n \colon R \to R/\mathfrak{m}^n$  is a Golod homomorphism, but the converse may not hold.

Levin [9] showed that  $\mathfrak{m}^n$  is a small submodule of  $\mathfrak{m}^{n-1}$  for all sufficiently large values of n. On the other hand, the fact that  $\mathfrak{m}^n$  is a small submodule of  $\mathfrak{m}^{n-1}$  for small values of n is an indicator of strong homological properties. It is known that  $\mathfrak{m}^2$  is a small submodule of  $\mathfrak{m}$  if and only if the Yoneda algebra  $\operatorname{Ext}_R(k,k)$  is generated in degree 1, cf. [12, Corollary 1]. More generally, we show:

\* Corresponding author.

http://dx.doi.org/10.1016/j.jpaa.2016.06.010







 $<sup>^{*}</sup>$  This work is partly supported by a grant from the National Science Foundation (DMS-1101131) and grants from the Simons Foundation (#20903 and #354594, Liana Şega).

E-mail addresses: jhoff@nwmissouri.edu (J. Hoffmeier), segal@umkc.edu (L.M. Şega).

<sup>0022-4049/© 2016</sup> Elsevier B.V. All rights reserved.

**Theorem 1.** Let  $(R, \mathfrak{m}, k)$  be a local ring. Let  $\widehat{R} = Q/I$  be a minimal Cohen presentation of R, with  $(Q, \mathfrak{n}, k)$  a regular local ring and  $I \subseteq \mathfrak{n}^2$ . Let t be an integer such that  $I \subseteq \mathfrak{n}^t$ . The following statements are then equivalent:

- (1)  $\mathfrak{m}^t$  is a small submodule of  $\mathfrak{m}^{t-1}$ ;
- (2)  $\rho_t \colon R \to R/\mathfrak{m}^t$  is Golod;
- (3)  $\rho_n \colon R \to R/\mathfrak{m}^n$  is Golod for all n such that  $t \leq n \leq 2t-2$ ;
- (4)  $I \cap \mathfrak{n}^{t+1} \subseteq \mathfrak{n}I$  and the algebra  $\operatorname{Ext}_R^*(k,k)$  is generated by  $\operatorname{Ext}_R^1(k,k)$  and  $\operatorname{Ext}_R^2(k,k)$ .

If R is artinian, its socle degree is the largest integer s with  $\mathfrak{m}^s \neq 0$ . When R is a compressed Gorenstein local ring (see Section 3 for a definition) of socle degree  $s \neq 3$ , we determine all values of the integer n for which the homomorphism  $\rho_n$  is Golod, respectively for which  $\mathfrak{m}^n$  is a small submodule of  $\mathfrak{m}^{n-1}$ , and we use Theorem 1 to establish part (3) below.

**Theorem 2.** Let  $(R, \mathfrak{m}, k)$  be a compressed Gorenstein local ring of socle degree s. Assume  $2 \le s \ne 3$  and let t denote the smallest integer such that  $2t \ge s + 1$ . If  $n \ge 1$ , then the following hold:

- (1)  $\mathfrak{m}^n$  is a small submodule of  $\mathfrak{m}^{n-1}$  if and only if n > s or n = s + 2 t.
- (2)  $\rho_n \colon R \to R/\mathfrak{m}^n$  is Golod if and only if  $n \ge s+2-t$ .
- (3) If s is even, then  $\operatorname{Ext}_R(k,k)$  is generated by  $\operatorname{Ext}_R^1(k,k)$  and  $\operatorname{Ext}_R^2(k,k)$ .

The conclusion of (3) does not hold when s is odd, see Corollary 3.7.

Section 1 provides definitions and properties of the homological notions of interest. Theorem 1 is proved in Section 2 and Theorem 2 is proved in Section 3.

### 1. Preliminaries

Throughout the paper  $(R, \mathfrak{m}, k)$  denotes a commutative noetherian local ring with maximal ideal  $\mathfrak{m}$  and residue field k. Let M be a finitely generated R-module.

We denote by  $\widehat{R}$  the completion of R with respect to  $\mathfrak{m}$ . A minimal Cohen presentation of R is a presentation  $\widehat{R} = Q/I$ , with Q a regular local ring with maximal ideal  $\mathfrak{n}$  and I an ideal with  $I \subseteq \mathfrak{n}^2$ . We know that such a presentation exists, by the Cohen structure theorem.

We denote by  $R^{g}$  the associated graded ring with respect to  $\mathfrak{m}$ , and by  $M^{g}$  the associated graded module with respect to  $\mathfrak{m}$ . We denote by  $(R^{g})_{j}$  the *j*-th graded component of  $R^{g}$ . For any  $x \in R$  we denote by  $x^{*}$ the image of x in  $\mathfrak{m}^{j}/\mathfrak{m}^{j+1} = (R^{g})_{j}$ , where j is such that  $x \in \mathfrak{m}^{j} \setminus \mathfrak{m}^{j+1}$ . For an ideal J of R, we denote by  $J^{*}$  the homogeneous ideal generated by the elements  $x^{*}$  with  $x \in J$ .

**Remark 1.1.** With  $\hat{R} = Q/I$  as above, the following then hold:

- (1)  $I \subseteq \mathfrak{n}^t$  if and only if  $\operatorname{rank}_k(\mathfrak{m}^{t-1}/\mathfrak{m}^t) = \binom{e+t-2}{e-1}$ , where *e* denotes the minimal number of generators of  $\mathfrak{m}$ .
- (2) Assume  $t \geq 2$  and  $I \subseteq \mathfrak{n}^t$ . Then  $I \cap \mathfrak{n}^{t+1} \subseteq \mathfrak{n}I$  if and only if the map

$$\operatorname{Ext}_{\rho_t}^2(k,k) \colon \operatorname{Ext}_{R/\mathfrak{m}^t}^2(k,k) \to \operatorname{Ext}_R^2(k,k)$$

induced by the canonical projection  $\rho_t \colon R \to R/\mathfrak{m}^t$  is surjective.

Download English Version:

# https://daneshyari.com/en/article/4595708

Download Persian Version:

https://daneshyari.com/article/4595708

Daneshyari.com