Palindromic automorphisms of free nilpotent groups

Valeriy G. Bardakov ${ }^{\text {a,b,c }}$, Krishnendu Gongopadhyay ${ }^{\text {d }}$, Mikhail V. Neshchadim ${ }^{\text {a }}$, Mahender Singh ${ }^{\text {d,* }}$
a Sobolev Institute of Mathematics and Novosibirsk State University, Novosibirsk 630090, Russia
b Laboratory of Quantum Topology, Chelyabinsk State University, Brat'ev Kashirinykh street 129, Chelyabinsk 454001, Russia
c Department of AOI, Novosibirsk State Agrarian University, Dobrolyubova street, 160, Novosibirsk, 630039, Russia
${ }^{\text {d }}$ Indian Institute of Science Education and Research (IISER) Mohali, Sector 81, S.A.S. Nagar, P.O. Manauli, Punjab 140306, India

A R T I C L E I N F O

Article history:

Received 26 October 2015
Received in revised form 2 June 2016
Available online 27 June 2016
Communicated by C. Kassel

$M S C$:

Primary: 20F28; secondary: 20E36; 20E05

Abstract

In this paper, we initiate the study of palindromic automorphisms of groups that are free in some variety. More specifically, we define palindromic automorphisms of free nilpotent groups and show that the set of such automorphisms is a group. We find a generating set for the group of palindromic automorphisms of free nilpotent groups of step 2 and 3 . In particular, we obtain a generating set for the group of central palindromic automorphisms of these groups. In the end, we determine central palindromic automorphisms of free nilpotent groups of step 3 which satisfy the necessary condition of Bryant-Gupta-Levin-Mochizuki for a central automorphism to be tame.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Let \mathcal{M} be a variety of groups, and F be a group that is free in \mathcal{M}. Let $X=\left\{x_{1}, \ldots, x_{n}\right\}$ be a basis of F. A reduced word $w=x_{i_{1}} x_{i_{2}} \ldots x_{i_{m}}$ in $X^{ \pm 1}$ is called a palindrome in the alphabet $X^{ \pm 1}$ if it is equal as a word to its reverse word $\bar{w}=x_{i_{m}} \ldots x_{i_{2}} x_{i_{1}}$, where by \mp we denote equality of letter by letter. An element $g \in F$ is called a palindrome if it can be represented by some word in the alphabet $X^{ \pm 1}$, which is a palindrome. Note that this definition depends on the generating set X of F.

In [6], Collins defined and investigated palindromic automorphisms of absolutely free groups. Following Collins, we say that an automorphism ϕ of F is a palindromic automorphism if x_{i}^{ϕ} is a palindrome with respect to X for each $1 \leq i \leq n$. It is not difficult to check that the product of two palindromic automor-

[^0]phisms is again a palindromic automorphism. We denote the monoid of palindromic automorphisms of F by $\Pi A(F)$.

Let $p_{1}, \ldots, p_{n} \in F$. An automorphism ϕ of F of the form

$$
\phi: x_{i} \mapsto \overline{p_{i}} x_{i} p_{i} \text { for each } 1 \leq i \leq n
$$

is called an elementary palindromic automorphism. The sub-monoid of elementary palindromic automorphisms of F is denoted by $E \Pi A(F)$.

If $F=F_{n}$ with basis $\left\{x_{1}, \ldots, x_{n}\right\}$, then for each $1 \leq i \leq n$ and $1 \leq j \leq n-1$, the maps

$$
t_{i}:\left\{\begin{array}{l}
x_{i} \longmapsto x_{i}^{-1} \\
x_{k} \longmapsto x_{k} \quad \text { for } k \neq i
\end{array}\right.
$$

and

$$
\alpha_{j, j+1}:\left\{\begin{array}{l}
x_{j} \longmapsto x_{j+1} \\
x_{j+1} \longmapsto x_{j} \\
x_{k} \longmapsto x_{k} \quad \text { for } k \neq j
\end{array}\right.
$$

are automorphisms of F_{n}. The group

$$
\left.\Omega S_{n}\left(F_{n}\right):=\left\langle t_{i}, \alpha_{j, j+1}\right| 1 \leq i \leq n \text { and } 1 \leq j \leq n-1\right\rangle
$$

is a subgroup of $\operatorname{Aut}\left(F_{n}\right)$ (see, for example, [17]). Now, if the group F is free in some variety and has rank n, then there is a homomorphism $A u t\left(F_{n}\right) \rightarrow A u t(F)$. The image of $\Omega S_{n}\left(F_{n}\right)$ under this homomorphism is called the extended symmetric group and denoted by $\Omega S_{n}(F)$. For simplicity, we denote generators of $\Omega S_{n}(F)$ by $t_{i}, \alpha_{j, j+1}$, which act on a basis of F as above. Clearly, $E \Pi A(F)$ and $\Omega S_{n}(F)$ generate $\Pi A(F)$ as a monoid and $\Pi A(F)=E \Pi A(F) \rtimes \Omega S_{n}(F)$. Let $I A(F)$ denote the group of those automorphisms of F that induce identity on the abelianization F / F^{\prime} of F. Let $P I(F)=E \Pi A(F) \cap I A(F)$ denote the sub-monoid of palindromic $I A$-automorphisms of F.

If $F=F_{n}$ is a free group, then Collins [6] obtained a generating set for $\Pi A\left(F_{n}\right)$. In particular, Collins proved that $E \Pi A\left(F_{n}\right)$ is a group generated by $\mu_{i j}$ for $1 \leq i \neq j \leq n$, where

$$
\mu_{i j}:\left\{\begin{array}{l}
x_{i} \longmapsto x_{j} x_{i} x_{j} \\
x_{k} \longmapsto x_{k}
\end{array} \quad \text { for } k \neq i\right.
$$

In the same paper [6], Collins conjectured that $E \Pi A\left(F_{n}\right)$ is torsion free for each $n \geq 2$. Using geometric techniques, Glover and Jensen [11] proved this conjecture and also calculated the virtual cohomological dimension of $\Pi A\left(F_{n}\right)$. Extending this work in [13], Jensen, McCommand and Meier computed the Euler characteristic of $\Pi A\left(F_{n}\right)$ and $E \Pi A\left(F_{n}\right)$. In [16], Piggott and Ruane constructed Markov languages of normal forms for $\Pi A\left(F_{n}\right)$ using methods from logic theory. In $[18,19]$, Nekritsukhin investigated some basic group theoretic questions about $\Pi A\left(F_{n}\right)$. In particular, he studied involutions and center of $\Pi A\left(F_{n}\right)$. In a recent paper [10], Fullarton obtained a generating set for the palindromic IA-automorphism group $P I\left(F_{n}\right)$. This was obtained by constructing an action of $P I\left(F_{n}\right)$ on a simplicial complex modeled on the complex of partial bases due to Day and Putman [7]. The papers [11] and [10] indicate a deep connection between palindromic automorphisms of free groups and geometry. Recently, Bardakov, Gongopadhyay and Singh [3] investigated many algebraic properties of $\Pi A\left(F_{n}\right)$. In particular, they obtained conjugacy classes of involutions in $\Pi A\left(F_{2}\right)$ and investigated residual nilpotency of $\Pi A\left(F_{n}\right)$. They also refined a result of Fullarton [10] by proving that $P I\left(F_{n}\right)=I A\left(F_{n}\right) \cap E \Pi A^{\prime}\left(F_{n}\right)$.

https://daneshyari.com/en/article/4595709

Download Persian Version:
https://daneshyari.com/article/4595709

Daneshyari.com

[^0]: * Corresponding author.

 E-mail addresses: bardakov@math.nsc.ru (V.G. Bardakov), krishnendu@iisermohali.ac.in (K. Gongopadhyay), neshch@math.nsc.ru (M.V. Neshchadim), mahender@iisermohali.ac.in (M. Singh).

