ELSEVIER

Contents lists available at ScienceDirect

Journal of Pure and Applied Algebra

www.elsevier.com/locate/jpaa

Locally finite groups in which every non-cyclic subgroup is self-centralizing

JOURNAL OF PURE AND APPLIED ALGEBRA

Costantino Delizia^{a,*}, Urban Jezernik^b, Primož Moravec^c, Chiara Nicotera^a, Chris Parker^d

^a University of Salerno, Italy

^b Institute of Mathematics, Physics, and Mechanics, Ljubljana, Slovenia

^c University of Ljubljana, Slovenia

^d University of Birmingham, United Kingdom

ARTICLE INFO

Article history: Received 22 April 2015 Received in revised form 28 May 2016 Available online 16 June 2016 Communicated by G. Rosolini

MSC: 20F50; 20E34; 20D25

Keywords: Self-centralizing subgroup Frobenius group Locally finite group

1. Introduction

A subgroup H of a group G is *self-centralizing* if the centralizer $C_G(H)$ is contained in H. In [1] it has been remarked that a locally graded group in which all non-trivial subgroups are self-centralizing has to be finite; therefore it has to be either cyclic of prime order or non-abelian of order being the product of two different primes.

In this article, we consider the more extensive class \mathfrak{X} of all groups in which every non-cyclic subgroup is self-centralizing. In what follows we use the term \mathfrak{X} -groups in order to denote groups in the class \mathfrak{X} . The study of properties of \mathfrak{X} -groups was initiated in [1]. In particular, the first four authors determined the structure of finite \mathfrak{X} -groups which are either nilpotent, supersoluble or simple.

ABSTRACT

Locally finite groups having the property that every non-cyclic subgroup contains its centralizer are completely classified.

© 2016 Elsevier B.V. All rights reserved.

^{*} Corresponding author.

E-mail addresses: cdelizia@unisa.it (C. Delizia), urban.jezernik@imfm.si (U. Jezernik), primoz.moravec@fmf.uni-lj.si (P. Moravec), cnicoter@unisa.it (C. Nicotera), c.w.parker@bham.ac.uk (C. Parker).

In this paper, Theorem 2.1 gives a complete classification of finite \mathfrak{X} -groups. We remark that this result does not depend on classification of the finite simple groups rather only on the classification of groups with dihedral or semidihedral Sylow 2-subgroups. We also determine the infinite soluble \mathfrak{X} -groups, and the infinite locally finite \mathfrak{X} -groups, the results being presented in Theorems 3.6 and 3.7. It turns out that these latter groups are suitable finite extensions either of the infinite cyclic group or of a Prüfer *p*-group, $\mathbb{Z}_{p^{\infty}}$, for some prime *p*. Theorem 3.7 together with Theorem 2.1 provides a complete classification of locally finite \mathfrak{X} -groups.

We follow [2] for basic group theoretical notation. In particular, we note that $F^*(G)$ denotes the generalized Fitting subgroup of G, that is the subgroup of G generated by all subnormal nilpotent or quasisimple subgroups of G. The latter subgroups are the components of G. We see from [2, Section 31] that distinct components commute. The fundamental property of the generalized Fitting subgroup that we shall use is that it contains its centralizer in G [2, (31.13)]. We denote the alternating group and symmetric group of degree n by Alt(n) and Sym(n) respectively. We use standard notation for the classical groups. The notation Dih(n) denotes the dihedral group of order n and Q₈ is the quaternion group of order 8. The term quaternion group will cover groups which are often called generalized quaternion groups. The cyclic group of order n is represented simply by n, so for example Dih $(12) \cong 2 \times \text{Dih}(6) \cong 2 \times \text{Sym}(3)$. Finally Mat(10)denotes the Mathieu group of degree 10. The Atlas [3] conventions are used for group extensions. Thus, for example, $p^2:\text{SL}_2(p)$ denotes the split extension of an elementary abelian group of order p^2 by SL $_2(p)$.

2. Finite X-groups

In this section we determine all the finite groups belonging to the class \mathfrak{X} . The main result is the following.

Theorem 2.1. Let G be a finite \mathfrak{X} -group. Then one of the following holds:

- (1) If G is nilpotent, then either
 - (1.1) G is cyclic;
 - (1.2) G is elementary abelian of order p^2 for some prime p;
 - (1.3) G is an extraspecial p-group of order p^3 for some odd prime p; or
 - (1.4) G is a dihedral, semidihedral or quaternion 2-group.
- (2) If G is supersoluble but not nilpotent, then, letting p denote the largest prime divisor of |G| and $P \in Syl_p(G)$, we have that P is a normal subgroup of G and one of the following holds:
 - (2.1) P is cyclic and either
 - (2.1.1) $G \cong D \ltimes C$, where C is cyclic, D is cyclic and every non-trivial element of D acts fixed point freely on C (so G is a Frobenius group);
 - (2.1.2) $G = D \ltimes C$, where C is a cyclic group of odd order, D is a quaternion group, and $C_G(C) = C \times D_0$ where D_0 is a cyclic subgroup of index 2 in D with G/D_0 a dihedral group; or
 - (2.1.3) $G = D \ltimes C$, where D is a cyclic q-group, C is a cyclic q'-group (here q denotes the smallest prime dividing the order of G), 1 < Z(G) < D and G/Z(G) is a Frobenius group;
 - (2.2) *P* is extraspecial and *G* is a Frobenius group with cyclic Frobenius complement of odd order dividing p 1.
- (3) If G is not supersoluble and $F^*(G)$ is nilpotent, then either (3.1) or (3.2) below holds.
 - (3.1) $F^*(G)$ is elementary abelian of order p^2 , $F^*(G)$ is a minimal normal subgroup of G and one of the following holds:

(3.1.1)
$$p = 2$$
 and $G \cong \text{Sym}(4)$ or $G \cong \text{Alt}(4)$; or

Download English Version:

https://daneshyari.com/en/article/4595713

Download Persian Version:

https://daneshyari.com/article/4595713

Daneshyari.com