

Contents lists available at ScienceDirect

Journal of Pure and Applied Algebra

www.elsevier.com/locate/jpaa

A calculus of lax fractions *

Lurdes Sousa

CMUC, University of Coimbra & Polytechnic Institute of Viseu, Portugal

ARTICLE INFO

ABSTRACT

Article history: Received 26 October 2015 Received in revised form 3 June 2016 Available online 18 July 2016 Communicated by J. Adámek We present a notion of category of lax fractions, where lax fraction stands for a formal composition s_*f with $s_*s = \mathrm{id}$ and $ss_* \leq \mathrm{id}$, and a corresponding calculus of lax fractions which generalizes the Gabriel–Zisman calculus of fractions.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Given a class Σ of morphisms of a category \mathcal{X} , we can construct a category of fractions $\mathcal{X}[\Sigma^{-1}]$ where all morphisms of Σ are invertible. More precisely, we can define a functor $P_{\Sigma}: \mathcal{X} \to \mathcal{X}[\Sigma^{-1}]$ which takes the morphisms of Σ to isomorphisms, and, moreover, P_{Σ} is universal with respect to this property. As shown in [12], if Σ admits a calculus of fractions, then the morphisms of $\mathcal{X}[\Sigma^{-1}]$ can be expressed by equivalence classes of cospans (f,g) of morphisms of \mathcal{X} with $g \in \Sigma$, which correspond to the formal compositions $g^{-1}f$.

We recall that categories of fractions are closely related to reflective subcategories and orthogonality. In particular, if \mathcal{A} is a full reflective subcategory of \mathcal{X} , the class Σ of all morphisms inverted by the corresponding reflector functor – equivalently, the class of all morphisms with respect to which \mathcal{A} is orthogonal – admits a left calculus of fractions; and \mathcal{A} is, up to equivalence of categories, a category of fractions of \mathcal{X} for Σ . In [3] we presented a Finitary Orthogonality Deduction System inspired by the left calculus of fractions, which can be looked as a generalization of the Implicational Logic of [18], see [4].

Assume now that \mathcal{X} is an order-enriched category, that is, its hom-sets $\mathcal{X}(X,Y)$ are endowed with a partial order satisfying the condition $f \leq g \Rightarrow hfj \leq hgj$ for every morphisms $f,g:X \to Y,\ j:Z \to X$ and $h:Y \to W$. We call a morphism $f:X \to Y$ of \mathcal{X} a left adjoint section if it is a left adjoint and has a left inverse; equivalently, there is a morphism $f_*:Y \to X$ such that $f_*f = \mathrm{id}_X$ and $ff_* \leq \mathrm{id}_Y$. We are interested in a category of lax fractions in the sense that, given a class Σ of morphisms of \mathcal{X} , we want a category $\mathcal{X}[\Sigma_*]$ and an order-enriched functor $P_{\Sigma}:\mathcal{X}\to\mathcal{X}[\Sigma_*]$ which takes morphisms of Σ to left adjoint

E-mail address: sousa@estv.ipv.pt.

 $^{^{\}pm}$ This work was partially supported by the Centre for Mathematics of the University of Coimbra – UID/MAT/00324/2013, funded by the Portuguese Government through FCT/MCTES and co-funded by the European Regional Development Fund through the Partnership Agreement PT2020.

sections of $\mathfrak{X}[\Sigma_*]$ and, moreover, P_{Σ} is universal with respect to that property. This problem is connected with the study of KZ-monads and Kan-injectivity as explained next.

In recent papers ([1,7]) we have studied a lax version of orthogonality in order-enriched categories: Kan-injectivity. An object A is said to be (left) Kan-injective with respect to a morphism $h: X \to Y$ provided that for every morphism $f: X \to A$ there is a left Kan extension of f along h, denoted f/h, and, moreover, f = (f/h)h. And a morphism $k: A \to B$ is said to be Kan-injective with respect to h if A and B are so and k preserves left Kan extensions along h, i.e., (kf)/h = k(f/h). Let A be a subcategory of an order-enriched category X. We say that A is KZ-reflective if it is reflective and the monad induced in X by the reflector functor $F: X \to A$ is a KZ-monad, i.e., the unit η satisfies the inequalities $F\eta_X \leq \eta_{FX}$ for all objects X of X ([16,11]). If, moreover, A is an Eilenberg-Moore category of a KZ-monad over X, we say that A is a KZ-monadic subcategory of X. Let A^{LInj} denote the class of all morphisms with respect to which all objects and morphisms of A are left Kan-injective. As shown in [7], if A is KZ-reflective in X, A^{LInj} consists precisely of all morphisms of X whose images through the reflector functor are left adjoint sections.

In this paper we present the notion of category of lax fractions $P_{\Sigma}: \mathcal{X} \to \mathcal{X}[\Sigma_*]$ and a calculus of lax fractions which generalize the usual non-lax versions. But now Σ is not just a class of morphisms, as in the ordinary case; instead, it is a subcategory of the arrow category \mathcal{X}^{\to} . And the calculus of lax fractions is expressed as a calculus of squares (called Σ -squares) which represent formal equalities of the form $fr_* = s_*g$ (see Section 4). This way, we obtain a description of the category of lax fractions of \mathcal{X} , for Σ a subcategory of \mathcal{X}^{\to} admitting a left calculus of lax fractions, in terms of formal fractions s_*f represented by cospans

 $\bullet \xrightarrow{f} \bullet \stackrel{s}{\longleftarrow} \bullet$ with s an object of Σ (Theorem 4.11). The idea of "calculating" with squares of the base category \mathcal{X} instead of just with morphisms of \mathcal{X} is also used in the paper in preparation [2] in order to obtain a Kan-Injectivity Logic generalizing the Orthogonality Logic of [3].

Given a subcategory \mathcal{A} of \mathcal{X} , let $\mathcal{A}^{\underline{\mathsf{LInj}}}$ denote the subcategory of \mathcal{X}^{\to} whose objects are the morphisms of $\mathcal{A}^{\mathsf{LInj}}$, and whose morphisms between them are those of the form $(u,v):(s:X\to Y)\longrightarrow (s':Z\to W)$ such that (fu)/s=(f/s')v for all f with domain Z and codomain in \mathcal{A} . We show that, for $\Sigma=\mathcal{A}^{\underline{\mathsf{LInj}}}$, if \mathcal{A} is a KZ-reflective subcategory of \mathcal{X} , the category $\mathcal{X}[\Sigma_*]$ is the Kleisli category for the monad induced by the reflector functor $F:\mathcal{X}\to\mathcal{A}$, and F differs from the functor $P_{\Sigma}:\mathcal{X}\to\mathcal{X}[\Sigma_*]$ at most by closedness under left adjoint retractions (Theorem 3.7); moreover, Σ admits a left calculus of lax fractions (Proposition 4.5).

We finish up with some properties on cocompleteness. We show that whenever \mathcal{X} has weighted colimits, any subcategory of $\mathcal{X}^{\rightarrow}$ of the form $\Sigma = \mathcal{A}^{\underline{\mathsf{LInj}}}$ also has weighted colimits (Theorem 5.1) and admits a left calculus of lax fractions, and the corresponding category of lax fractions $\mathcal{X}[\Sigma_*]$ has (small) conical coproducts. Moreover, we present conditions on any subcategory Σ under which $\mathcal{X}[\Sigma_*]$ has finite conical coproducts, provided \mathcal{X} has them.

Several examples of subcategories Σ of $\mathfrak{X}^{\rightarrow}$ admitting a left calculus of lax fractions are provided in Examples 4.4 for \mathfrak{X} the category Pos of posets and monotone maps, the category Loc of locales and localic maps, and the category Top₀ of T_0 topological spaces and continuous maps.

The study of constructions of categories by freely adding adjoints to the arrows of a category has been addressed before. Although the present approach is completely different, it is worth mentioning here the works [9] and [10] of Dawson, Paré and Pronk.

2. Preliminaries

Along this paper we work in the order-enriched context. More precisely, we consider categories and functors enriched in the category Pos of posets and monotone maps. For a category \mathcal{X} this means that each one of its hom-sets $\mathcal{X}(X,Y)$ is equipped with a partial order \leq which is preserved by composition on the left and on the right. And a functor between order-enriched categories is order-enriched if it preserves the partial order of the morphisms. A subcategory of an order-enriched category \mathcal{X} will be considered order-enriched via the restriction of the order on the morphisms of \mathcal{X} to the morphisms of \mathcal{A} .

Download English Version:

https://daneshyari.com/en/article/4595715

Download Persian Version:

https://daneshyari.com/article/4595715

<u>Daneshyari.com</u>